IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p638-d136082.html
   My bibliography  Save this article

Comparative Analysis of Infrared Thermography and CFD Modelling for Assessing the Thermal Performance of Buildings

Author

Listed:
  • Carlos Morón

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Pablo Saiz

    (Departamento de Economía Financiera, Contabilidad e Idioma Moderno, Universidad Rey Juan Carlos, 28040 Madrid, Spain)

  • Daniel Ferrández

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Rubén Felices

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

Energy consumption in the building sector has increased significantly in the developed countries over the last decades. For this reason, the new European standards have become stricter in terms of energy saving. This paper establishes a comparison between using infrared thermography for technical building inspection and modelling with Computational Flow Dynamics (CFD) tools for the study of thermal performance of the building. The results show that the use of this type of tools gives a reliable response with the difference in thermal changes lower than 0.5 °C with respect to the data taken in situ. Moreover, these simulators of flow dynamics allow to evaluate the efficiency of proposed measures for energy savings and to obtain a reliable approximation to thermal comfort applying the improvement, deepening in the surface analysis of infrared thermography before performing rehabilitation project. In this research, Predicted Mean Vote Index (PMV) comfort index of 0.7 for a living room and 0.6 for a bedroom were obtained, that corresponds to C class that includes values in the range of −0.7 < PMV < 0.7 according to the standard UNE-EN 7730.

Suggested Citation

  • Carlos Morón & Pablo Saiz & Daniel Ferrández & Rubén Felices, 2018. "Comparative Analysis of Infrared Thermography and CFD Modelling for Assessing the Thermal Performance of Buildings," Energies, MDPI, vol. 11(3), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:638-:d:136082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco, 2012. "A quantitative methodology to evaluate thermal bridges in buildings," Applied Energy, Elsevier, vol. 97(C), pages 365-373.
    2. Pau Fonseca i Casas & Antoni Fonseca i Casas & Nuria Garrido-Soriano & Alfonso Godoy & Wendys-Carolina Pujols & Jesus Garcia, 2017. "Solution Validation for a Double Façade Prototype," Energies, MDPI, vol. 10(12), pages 1-19, December.
    3. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    4. Capeluto, I. Guedi & Ochoa, Carlos E., 2014. "Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system," Energy, Elsevier, vol. 76(C), pages 375-384.
    5. Miguel Ángel Padilla-Marcos & Alberto Meiss & Jesús Feijó-Muñoz, 2017. "Proposal for a Simplified CFD Procedure for Obtaining Patterns of the Age of Air in Outdoor Spaces for the Natural Ventilation of Buildings," Energies, MDPI, vol. 10(9), pages 1-17, August.
    6. Nussbaumer, T. & Wakili, K. Ghazi & Tanner, Ch., 2006. "Experimental and numerical investigation of the thermal performance of a protected vacuum-insulation system applied to a concrete wall," Applied Energy, Elsevier, vol. 83(8), pages 841-855, August.
    7. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    8. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuhiro Yamamoto & Akihito Ozaki & Myonghyang Lee, 2021. "Optimal Air Conditioner Placement Using a Simple Thermal Environment Analysis Method for Continuous Large Spaces with Predominant Advection," Energies, MDPI, vol. 14(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    2. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    3. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    5. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    6. Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
    7. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    8. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
    9. Shabunko, Veronika & Badrinarayanan, Samyuktha & Pillai, Dhanup S., 2021. "Evaluation of in-situ thermal transmittance of innovative building integrated photovoltaic modules: Application to thermal performance assessment for green mark certification in the tropics," Energy, Elsevier, vol. 235(C).
    10. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    11. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    12. Flores Larsen, Silvana & Hongn, Marcos, 2014. "Determining the infrared reflectance of specular surfaces by using thermographic analysis," Renewable Energy, Elsevier, vol. 64(C), pages 306-313.
    13. Yu Hou & Rebekka Volk & Lucio Soibelman, 2021. "A Novel Building Temperature Simulation Approach Driven by Expanding Semantic Segmentation Training Datasets with Synthetic Aerial Thermal Images," Energies, MDPI, vol. 14(2), pages 1-16, January.
    14. Ohlsson, K.E.A. & Olofsson, T., 2014. "Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface," Applied Energy, Elsevier, vol. 134(C), pages 499-505.
    15. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    16. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
    17. Lehmann, B. & Ghazi Wakili, K. & Frank, Th. & Vera Collado, B. & Tanner, Ch., 2013. "Effects of individual climatic parameters on the infrared thermography of buildings," Applied Energy, Elsevier, vol. 110(C), pages 29-43.
    18. Aïssani, A. & Chateauneuf, A. & Fontaine, J.-P. & Audebert, Ph., 2016. "Quantification of workmanship insulation defects and their impact on the thermal performance of building facades," Applied Energy, Elsevier, vol. 165(C), pages 272-284.
    19. Iole Nardi & Elena Lucchi, 2023. "In Situ Thermal Transmittance Assessment of the Building Envelope: Practical Advice and Outlooks for Standard and Innovative Procedures," Energies, MDPI, vol. 16(8), pages 1-31, April.
    20. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:638-:d:136082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.