IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p516-d133870.html
   My bibliography  Save this article

Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept

Author

Listed:
  • Subhash Paul

    (School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada)

  • Animesh Dutta

    (School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada)

  • Fantahun Defersha

    (School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada)

Abstract

In this research fall time harvested corn residue (CR) was first mechanically pretreated to produce 5 mm chopped and <500 µm ground particles, which underwent an anaerobic digestion (AD) process to produce biomethane and biofertilizer. Another sample of CR was pretreated by an alkaline hydrothermal (HT) process using 1%, 2% and 3% NaOH to produce solid biocarbon and the resulting alkaline hydrothermal process water (AHTPW), a co-product of biocarbon, underwent fast digestion under AD conditions to produce biomethane and biofertilizer. A predetermined HT process of 240 °C for 30 min was considered and the effect of alkali content on the HT process for biocarbon and biomethane product a rate of 8.21 MJ kg −1 and 9.23 MJ kg −1 of raw CR, respectively. Among the three selected alkaline HT processes, the 1% NaOH HT process produced the highest hybrid bioenergy of 11.39 MJ kg −1 of raw CR with an overall energy recovery of 62.82% of raw CR. The AHTPW of 2% and 3% NaOH HT-treated CR did not produce considerable amount of biomethane and their biocarbons contained 3.44 MJ kg −1 and 3.27 MJ kg −1 of raw CR of bioenergy, respectively. The biomethane produced from 5 mm chopped CR, <500 µm ground CR and 1% alkaline AHTPW for 30 days retention time were of 275.38 L kg −1 volatile solid (VS), 309.59 L kg −1 VS and 278.70 L kg −1 VS, respectively, compared to non-treated CR of 144–187 L kg −1 VS. Nutrient enriched AD digestate is useable as liquid fertilizer. Biocarbon, biomethane and biofertilizer produced from the 1% alkaline HT process at 240 °C for 30 min can reduce the greenhouse gas (GHG) emissions of Ontario.

Suggested Citation

  • Subhash Paul & Animesh Dutta & Fantahun Defersha, 2018. "Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept," Energies, MDPI, vol. 11(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:516-:d:133870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    2. Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.
    3. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    4. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    5. Xun Liu & Serge Hiligsmann & R. Gourdon & Rémy Bayard, 2017. "Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora," ULB Institutional Repository 2013/247652, ULB -- Universite Libre de Bruxelles.
    6. Rodrigo Lopes De Souza & Hao Yu & Franck Rataboul & Nadine Essayem, 2012. "5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System," Challenges, MDPI, vol. 3(2), pages 1-21, September.
    7. Akhtar, Javaid & Amin, Nor Aishah Saidina, 2011. "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1615-1624, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Simone Bergonzoli & Alessandro Suardi & Negar Rezaie & Vincenzo Alfano & Luigi Pari, 2020. "An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    2. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    3. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    4. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    5. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    6. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
    8. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    9. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    11. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    12. Mei, Danhua & Liu, Shiyun & Wang, Sen & Zhou, Renwu & Zhou, Rusen & Fang, Zhi & Zhang, Xianhui & Cullen, Patrick J. & Ostrikov, Kostya (Ken), 2020. "Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield," Renewable Energy, Elsevier, vol. 157(C), pages 1061-1071.
    13. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    14. Iris Kral & Gerhard Piringer & Molly K. Saylor & Javier Lizasoain & Andreas Gronauer & Alexander Bauer, 2020. "Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    15. Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
    16. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    17. Bangxi Zhang & Tianhong Fu & Chung-Yu Guan & Shihao Cui & Beibei Fan & Yi Tan & Wenhai Luo & Quanquan Wei & Guoxue Li & Yutao Peng, 2022. "Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    18. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    19. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    20. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:516-:d:133870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.