IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2578-d172367.html
   My bibliography  Save this article

Numerical Validation of Floating Offshore Wind Turbine Scaled Rotors for Surge Motion

Author

Listed:
  • Krishnamoorthi Sivalingam

    (Lloyd’s Register Singapore Pte Ltd., 1 Fusionopolis Place, #09-11 Galaxis, Singapore 138522, Singapore)

  • Steven Martin

    (Wind Energy Systems Centre for Doctoral Training, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Abdulqadir Aziz Singapore Wala

    (Lloyd’s Register Singapore Pte Ltd., 1 Fusionopolis Place, #09-11 Galaxis, Singapore 138522, Singapore)

Abstract

Aerodynamic performance of a floating offshore wind turbine (FOWT) is significantly influenced by platform surging motions. Accurate prediction of the unsteady aerodynamic loads is imperative for determining the fatigue life, ultimate loads on key components such as FOWT rotor blades, gearbox and power converter. The current study examines the predictions of numerical codes by comparing with unsteady experimental results of a scaled floating wind turbine rotor. The influence of platform surge amplitude together with the tip speed ratio on the unsteady aerodynamic loading has been simulated through unsteady CFD. It is shown that the unsteady aerodynamic loads of FOWT are highly sensitive to the changes in frequency and amplitude of the platform motion. Also, the surging motion significantly influences the windmill operating state due to strong flow interaction between the rotating blades and generated blade-tip vortices. Almost in all frequencies and amplitudes, CFD, LR-BEM and LR-uBEM predictions of mean thrust shows a good correlation with experimental results.

Suggested Citation

  • Krishnamoorthi Sivalingam & Steven Martin & Abdulqadir Aziz Singapore Wala, 2018. "Numerical Validation of Floating Offshore Wind Turbine Scaled Rotors for Surge Motion," Energies, MDPI, vol. 11(10), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2578-:d:172367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Micallef, Daniel & Sant, Tonio, 2015. "Loading effects on floating offshore horizontal axis wind turbines in surge motion," Renewable Energy, Elsevier, vol. 83(C), pages 737-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Alessi & José A. F. O. Correia & Nicholas Fantuzzi, 2019. "Initial Design Phase and Tender Designs of a Jacket Structure Converted into a Retrofitted Offshore Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-28, February.
    2. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    3. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    4. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
    6. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    3. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    4. Martín-San-Román, Raquel & Benito-Cia, Pablo & Azcona-Armendáriz, José & Cuerva-Tejero, Alvaro, 2021. "Validation of a free vortex filament wake module for the integrated simulation of multi-rotor wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 1706-1718.
    5. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    6. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    7. Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
    8. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    9. Zhang, Mingming & Li, Xin & Tong, Jingxin & Xu, Jianzhong, 2020. "Load control of floating wind turbine on a Tension-Leg-Platform subject to extreme wind condition," Renewable Energy, Elsevier, vol. 151(C), pages 993-1007.
    10. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
    11. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    12. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
    14. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2016. "Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach," Renewable Energy, Elsevier, vol. 85(C), pages 666-676.
    15. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    16. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    17. Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
    18. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    19. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Iida, Kohei & Okumura, Yuta, 2016. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism," Energy, Elsevier, vol. 99(C), pages 20-31.
    20. Chen, Guang & Liang, Xi-Feng & Li, Xiao-Bai, 2022. "Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2578-:d:172367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.