IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p946-d104069.html
   My bibliography  Save this article

Fault Diagnosis of On-Load Tap-Changer Based on Variational Mode Decomposition and Relevance Vector Machine

Author

Listed:
  • Jinxin Liu

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Guan Wang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Tong Zhao

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Li Zhang

    (Shandong Provincial Key Lab of UHV Transmission Technology and Equipment, Jinan 250061, China)

Abstract

In order to improve the intelligent diagnosis level of an on-load tap-changer’s (OLTC) mechanical condition, a feature extraction method based on variational mode decomposition (VMD) and weight divergence was proposed. The harmony search (HS) algorithm was used to optimize the parameter selection of the relevance vector machine (RVM). Firstly, the OLTC vibration signal was decomposed into a series of finite-bandwidth intrinsic mode function (IMF) by VMD under different working conditions. The weight divergence was extracted to characterize the complexity of the vibration signal. Then, weight divergence was used as training and test samples of the harmony search optimization-relevance vector machine (HS-RVM). The experimental results suggested that the proposed integrated model has high fault diagnosis accuracy. This model can accurately extract the characteristics of the mechanical condition, and provide a reference for the practical OLTC intelligent fault diagnosis.

Suggested Citation

  • Jinxin Liu & Guan Wang & Tong Zhao & Li Zhang, 2017. "Fault Diagnosis of On-Load Tap-Changer Based on Variational Mode Decomposition and Relevance Vector Machine," Energies, MDPI, vol. 10(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:946-:d:104069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    2. Yan Hong Chen & Wei-Chiang Hong & Wen Shen & Ning Ning Huang, 2016. "Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm," Energies, MDPI, vol. 9(2), pages 1-13, January.
    3. Nantian Huang & Chong Yuan & Guowei Cai & Enkai Xing, 2016. "Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine," Energies, MDPI, vol. 9(12), pages 1-19, November.
    4. Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
    5. Eguchi, Shinto & Copas, John, 2006. "Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2034-2040, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomu Duan & Tong Zhao & Jinxin Liu & Li Zhang & Liang Zou, 2018. "Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method," Energies, MDPI, vol. 11(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyue Hu & Zhijian Hu & Jingpeng Yue & Menglin Zhang & Meiyu Hu, 2017. "A Novel Multi-Objective Optimal Approach for Wind Power Interval Prediction," Energies, MDPI, vol. 10(4), pages 1-15, March.
    2. Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
    3. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    4. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    5. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    7. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    8. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    9. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    10. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    11. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    12. Shi, Yong & Ren, Xinyue & Guo, Kun & Zhou, Yi & Wang, Jun, 2020. "Research on the economic development pattern of Chinese counties based on electricity consumption," Energy Policy, Elsevier, vol. 147(C).
    13. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    14. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    15. Poonpong Suksawang & Sukonthip Suphachan & Kanokkarn Kaewnuch, 2018. "Electricity Consumption Forecasting in Thailand using Hybrid Model SARIMA and Gaussian Process with Combine Kernel Function Technique," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 98-109.
    16. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2018. "Forecasting exchange rate using Variational Mode Decomposition and entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 15-25.
    17. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    18. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    19. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    20. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:946-:d:104069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.