IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p599-d97227.html
   My bibliography  Save this article

The Effect of Solvents on the Performance of CH 3 NH 3 PbI 3 Perovskite Solar Cells

Author

Listed:
  • Pao-Hsun Huang

    (Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Yeong-Her Wang

    (Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Jhong-Ciao Ke

    (Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Chien-Jung Huang

    (Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 81148, Taiwan)

Abstract

The properties of perovskite solar cells (PSCs) fabricated using various solvents was studied. The devices had an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/CH 3 NH 3 PbI 3 (fabricated by using various solvents)/fullerene (C 60 )/bathocuproine (BCP)/silver (Ag) structure. The solvents used were dimethylformamide (DMF), γ-butyrolactone (GBL), dimethyl sulfoxide (DMSO), a mixture of DMSO and DMF (1:1 v / v ), and a mixture of DMSO and GBL (DMSO: GBL, 1:1 v / v ), respectively. The power conversion efficiency (PCE) of the device fabricated using DMF is zero, which is attributed to the poor coverage of CH 3 NH 3 PbI 3 film on the substrate. In addition, the PCE of the device made using GBL is only 1.74% due to the low solubility of PbI 2 and CH 3 NH 3 I. In contrast, the PCE of the device fabricated using the solvents containing DMSO showed better performance. This is ascribed to the high solubilization properties and strong coordination of DMSO. As a result, a PCE of 9.77% was obtained using a mixed DMSO:GBL solvent due to the smooth surface, uniform film coverage on the substrate and the high crystallization of the perovskite structure. Finally, a mixed DMSO: DMF:GBL (5:2:3 v / v / v ) solvent that combined the advantages of each solvent was used to fabricate a device, leading to a further improvement of the PCE of the resulting PSC to 10.84%.

Suggested Citation

  • Pao-Hsun Huang & Yeong-Her Wang & Jhong-Ciao Ke & Chien-Jung Huang, 2017. "The Effect of Solvents on the Performance of CH 3 NH 3 PbI 3 Perovskite Solar Cells," Energies, MDPI, vol. 10(5), pages 1-8, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:599-:d:97227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Yicheng Zhao & Jing Wei & Heng Li & Yin Yan & Wenke Zhou & Dapeng Yu & Qing Zhao, 2016. "A polymer scaffold for self-healing perovskite solar cells," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    2. Shoieb Shaik & Ziyou Zhou & Zhongliang Ouyang & Rebecca Han & Dawen Li, 2021. "Polymer Additive Assisted Fabrication of Compact and Ultra-Smooth Perovskite Thin Films with Fast Lamp Annealing," Energies, MDPI, vol. 14(9), pages 1-10, May.
    3. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    5. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    6. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    7. René Itten & Matthias Stucki, 2017. "Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts," Energies, MDPI, vol. 10(7), pages 1-18, June.
    8. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    9. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    11. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    12. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.
    13. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    14. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    15. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    16. Marwa. S. Salem & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Adwan Alanazi & Mohammad T. Alshammari & Christian Gontand, 2021. "Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator," Energies, MDPI, vol. 14(18), pages 1-22, September.
    17. Syed Afaq Ali Shah & Muhammad Hassan Sayyad & Karim Khan & Kai Guo & Fei Shen & Jinghua Sun & Ayesha Khan Tareen & Yubin Gong & Zhongyi Guo, 2020. "Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells," Energies, MDPI, vol. 13(19), pages 1-42, September.
    18. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    19. Zhipeng Li & Xiao Wang & Zaiwei Wang & Zhipeng Shao & Lianzheng Hao & Yi Rao & Chen Chen & Dachang Liu & Qiangqiang Zhao & Xiuhong Sun & Caiyun Gao & Bingqian Zhang & Xianzhao Wang & Li Wang & Guangle, 2022. "Ammonia for post-healing of formamidinium-based Perovskite films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Boucar Diouf & Aarti Muley & Ramchandra Pode, 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications," Energies, MDPI, vol. 16(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:599-:d:97227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.