IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p570-d96503.html
   My bibliography  Save this article

Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles

Author

Listed:
  • Kunlin Cheng

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

  • Yu Feng

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

  • Chuanwen Lv

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

  • Silong Zhang

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

  • Jiang Qin

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

  • Wen Bao

    (Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, China)

Abstract

The types and the characteristics of the waste heat on hypersonic vehicles and the application feasibility of thermoelectric generators (TEGs) for hypersonic aircraft are discussed in this paper. Two thermoelectric generator schemes with an isothermal heat source and a variable temperature heat source were proposed, and the corresponding models were developed to predict the performance of the waste heat recovery systems on a hypersonic vehicle with different heat sources. The thermoelectric efficiency variation with electric current, the temperature distribution of fuel and junctions, and the distribution of the thermoelectric figure of merit ( ZT value) are described by diagrams. Besides, some improvements for a better performance are analyzed. The results indicate that the maximum values of thermoelectric efficiency are 5% and 2.5% for the isothermal heat source and the variable temperature heat source, respectively, and the thermoelectric efficiency improves with the temperature of the hot junction. The performance of the TEGs with variable temperature heat source is worse than that of the other TEGs under the same highest hot junction temperature conditions, and the former has a better conversion efficiency than the latter when the average temperatures are identical.

Suggested Citation

  • Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:570-:d:96503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    2. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    3. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Wang, Xiangxiang, 2014. "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, Elsevier, vol. 77(C), pages 489-498.
    4. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    5. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    6. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    7. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    8. Allon I. Hochbaum & Renkun Chen & Raul Diaz Delgado & Wenjie Liang & Erik C. Garnett & Mark Najarian & Arun Majumdar & Peidong Yang, 2008. "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Nature, vol. 451(7175), pages 163-167, January.
    9. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    10. Javani, N. & Dincer, I. & Naterer, G.F., 2012. "Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles," Energy, Elsevier, vol. 46(1), pages 109-116.
    11. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    12. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    2. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    3. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    4. Xu, Qing & Li, Haowei & Feng, Yaoxun & Li, Xiaoning & Ling, Changming & Zhou, Chaoying & Qin, Jiang, 2020. "Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system," Energy, Elsevier, vol. 211(C).
    5. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    2. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    3. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    4. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    5. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    6. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    7. Arora, Ranjana & Kaushik, S.C. & Arora, Rajesh, 2015. "Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II," Energy, Elsevier, vol. 91(C), pages 242-254.
    8. Chen, Siyu & Xue, Yejian & Li, Jianming & Zhang, Houcheng & Zhou, Lihua & Li, Yangyang, 2023. "Efficient and geometry-matching two-stage annular thermoelectric generator for tubular solid oxide fuel cell waste heat recovery," Energy, Elsevier, vol. 285(C).
    9. Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
    10. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    11. Marco Altosole & Giovanni Benvenuto & Raphael Zaccone & Ugo Campora, 2020. "Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines," Energies, MDPI, vol. 13(4), pages 1-21, February.
    12. Hsu, Ping-Chia & Saragih, Ahmad Abror & Huang, Mei-Jiau & Juang, Jia-Yang, 2022. "New machine functions using waste heat recovery: A case study of atmospheric pressure plasma jet," Energy, Elsevier, vol. 239(PD).
    13. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    14. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    15. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    16. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    17. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    18. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    19. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    20. Yazawa, Kazuaki & Koh, Yee Rui & Shakouri, Ali, 2013. "Optimization of thermoelectric topping combined steam turbine cycles for energy economy," Applied Energy, Elsevier, vol. 109(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:570-:d:96503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.