IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p559-d96232.html
   My bibliography  Save this article

Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters

Author

Listed:
  • Yebai Qi

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Dan Wang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Xuyang Wang

    (State Power Economic Research Institute, Changping District, Beijing 102209, China)

  • Hongjie Jia

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Tianjiao Pu

    (China Electric Power Research Institute, Haidian District, Beijing 100192, China)

  • Naishi Chen

    (China Electric Power Research Institute, Haidian District, Beijing 100192, China)

  • Kaixin Liu

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

Frequency is an important parameter of a power system. It is of great significance to maintain its stability, especially in the current development scenario of large-scale interconnected power systems. Thermostatically controlled appliances (TCAs) are good controllable resources for demand response owing to their rapid response capabilities and relatively wide controllable ranges. In this study, domestic water heaters, which have wider deadbands compared with other typical TCAs, such as heat pumps, are used as frequency regulation resources. The main contribution of this paper is that it proposes a queuing-controlled strategy with lock-on and off constraints for controlling an efficient power plant consisting of water heaters (EPP-WH). The queuing-controlled strategy enables TCAs to provide frequency regulation ancillary service for the normal operation of the power system. The thermal dynamic process of the water heater and the formation of the EPP-WH are first discussed. Based on the developed model, a series of strategies are proposed, including load shedding calculation, top layer optimization, and improved temperature priority list (TPL) strategy with lock-on and off constraints. Finally, typical case studies are discussed to illustrate the frequency regulation effects and the effects of two characteristic parameters—users’ willingness and lock time limits. Reasonable targets are generated based on various consideration from top layer optimization module. The results indicate that using the model and proposed strategies, the EPP-WH has good frequency regulation performance.

Suggested Citation

  • Yebai Qi & Dan Wang & Xuyang Wang & Hongjie Jia & Tianjiao Pu & Naishi Chen & Kaixin Liu, 2017. "Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters," Energies, MDPI, vol. 10(4), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:559-:d:96232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaojing Yin & Yanbo Che & Dezhi Li & Huanan Liu & Dongmin Yu, 2017. "Optimal Scheduling Strategy for Domestic Electric Water Heaters Based on the Temperature State Priority List," Energies, MDPI, vol. 10(9), pages 1-15, September.
    2. Muhammad Saeed Uz Zaman & Syed Basit Ali Bukhari & Khalid Mousa Hazazi & Zunaib Maqsood Haider & Raza Haider & Chul-Hwan Kim, 2018. "Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia," Energies, MDPI, vol. 11(4), pages 1-20, March.
    3. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    5. Yao Yao & Peichao Zhang & Sijie Chen, 2019. "Aggregating Large-Scale Generalized Energy Storages to Participate in the Energy and Regulation Market," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elif Ustundag Soykan & Mustafa Bagriyanik, 2020. "The Effect of SMiShing Attack on Security of Demand Response Programs," Energies, MDPI, vol. 13(17), pages 1-17, September.
    2. Liu, Zhe & Wang, Dan & Jia, Hongjie & Djilali, Ned, 2014. "Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 136(C), pages 662-670.
    3. Yebai Qi & Dan Wang & Yu Lan & Hongjie Jia & Chengshan Wang & Kaixin Liu & Qing’e Hu & Menghua Fan, 2017. "A Two-Level Optimal Scheduling Strategy for Central Air-Conditioners Based on Metal Model with Comprehensive State-Queueing Control Models," Energies, MDPI, vol. 10(12), pages 1-21, December.
    4. Zhaojing Yin & Yanbo Che & Dezhi Li & Huanan Liu & Dongmin Yu, 2017. "Optimal Scheduling Strategy for Domestic Electric Water Heaters Based on the Temperature State Priority List," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    6. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    7. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    8. Georges, Emeline & Cornélusse, Bertrand & Ernst, Damien & Lemort, Vincent & Mathieu, Sébastien, 2017. "Residential heat pump as flexible load for direct control service with parametrized duration and rebound effect," Applied Energy, Elsevier, vol. 187(C), pages 140-153.
    9. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    10. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    11. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    12. Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2014. "Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks," Applied Energy, Elsevier, vol. 127(C), pages 249-266.
    13. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    14. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    15. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    16. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    17. Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
    18. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    20. Weiliang Wang & Dan Wang & Hongjie Jia & Guixiong He & Qing’e Hu & Pang-Chieh Sui & Menghua Fan, 2017. "Performance Evaluation of a Hydrogen-Based Clean Energy Hub with Electrolyzers as a Self-Regulating Demand Response Management Mechanism," Energies, MDPI, vol. 10(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:559-:d:96232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.