IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p38-d86691.html
   My bibliography  Save this article

Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines

Author

Listed:
  • Tariq Abdulsalam Khamlaj

    () (300 College Park Kettering Labs, University of Dayton, Dayton, OH 45469-0238, USA)

  • Markus Peer Rumpfkeil

    () (300 College Park Kettering Labs, University of Dayton, Dayton, OH 45469-0238, USA)

Abstract

Numerous analytical studies for power augmentation systems can be found in the literature with the goal to improve the performance of wind turbines by increasing the energy density of the air at the rotor. All methods to date are only concerned with the effects of a diffuser as the power augmentation, and this work extends the semi-empirical shrouded wind turbine model introduced first by Foreman to incorporate a converging-diverging nozzle into the system. The analysis is based on assumptions and approximations of the conservation laws to calculate optimal power coefficients and power extraction, as well as augmentation ratios. It is revealed that the power enhancement is proportional to the mass stream rise produced by the nozzle diffuser-augmented wind turbine (NDAWT). Such mass flow rise can only be accomplished through two essential principles: the increase in the area ratios and/or by reducing the negative back pressure at the exit. The thrust coefficient for optimal power production of a conventional bare wind turbine is known to be 8/9, whereas the theoretical analysis of the NDAWT predicts an ideal thrust coefficient either lower or higher than 8/9 depending on the back pressure coefficient at which the shrouded turbine operates. Computed performance expectations demonstrate a good agreement with numerical and experimental results, and it is demonstrated that much larger power coefficients than for traditional wind turbines are achievable. Lastly, the developed model is very well suited for the preliminary design of a shrouded wind turbine where typically many trade-off studies need to be conducted inexpensively.

Suggested Citation

  • Tariq Abdulsalam Khamlaj & Markus Peer Rumpfkeil, 2017. "Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines," Energies, MDPI, Open Access Journal, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:38-:d:86691
    as

    Download full text from publisher

    File URL: http://www.mdpi.com/1996-1073/10/1/38/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/1996-1073/10/1/38/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, Open Access Journal, vol. 3(4), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    nozzle diffuser augmented; wind turbine; wind lens; momentum theory; Betz limit;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:38-:d:86691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: http://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.