IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007011.html
   My bibliography  Save this article

A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver

Author

Listed:
  • Silva, Paulo A.S.F.
  • Tsoutsanis, Panagiotis
  • Vaz, Jerson R.P.
  • Macias, Marianela M.

Abstract

It is well known that a shroud placed around a wind turbine can increase its power coefficient, but it brings complex mechanisms by which the shroud alters the flow passing through the rotor. Such mechanisms impose numerical challenges, as the shrouded turbines present nonlinear behavior in the wake. This paper deals with a comprehensive analysis of tip vortex trajectory in shrouded wind turbines using Reynolds Averaged Navier–Stokes numerical solutions. The analysis includes aerodynamic performance and vortex characteristics of the whole wind turbine. The Multiple Reference Frame is used on a high-order unstructured compressible solver to study both, isolated and shrouded rotor. The NREL Phase VI Unsteady Aerodynamic Experiment rotor is used as a test case. The accuracy of results for wind speeds between 7 and 25 ms−1 is discussed. Overall, good agreement is achieved between the computed pressure distributions and the experimental reference values. At stalled blade, more efforts are needed to improve numerical solutions, especially for integrated load quantities. The vortex structure is examined, showing that shroud impacts tip vortex trajectory by the increase of the axial induced velocity at the rotor plane. This result, demonstrates that the classical Prandtl tip loss is not accurate for shrouded turbine analysis, and modern finite blade functions are needed. The influence of the flow conditions on the tip vortex trajectory, flow separation and shroud interaction are also discussed.

Suggested Citation

  • Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007011
    DOI: 10.1016/j.energy.2024.130929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.