IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223002165.html
   My bibliography  Save this article

Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine

Author

Listed:
  • Rahmatian, Mohammad Ali
  • Nazarian Shahrbabaki, Amin
  • Moeini, Seyed Peyman

Abstract

Nowadays, considering the importance of energy and the important role of wind in energy production, the present study investigates increasing the power coefficient of wind turbines by adding a convergent-divergent duct to them and optimizing the duct components. The primary duct consists of two components, a diffuser and a flange, to which a nozzle is added to the beginning of the diffuser. In this study, in the first step, 79 different geometries (three-dimensional) were defined using the design of experiments (DOE) and examined using the numerical method. Then, the output results are coupled by the response surface method (RSM) and genetic algorithm (GA) and the duct geometry is optimized. In this optimization process, 7 parameters including the length and angle of the duct components (nozzle, diffuser, and flange) and the throat diameter are investigated simultaneously. The objective functions in this optimization process are the maximum velocity and the maximum average velocity at the duct throat. In the second step, a horizontal axis wind turbine is placed inside the optimal duct and the gap between the blade tip and the duct is examined. The novelty of the present study is the simultaneous optimization of the length and angle of all components of a convergent-divergent duct, which has not been studied so far. The results show that the wind speed increases up to 2.18 times and the wind turbine power coefficient increases up to 3.94 times at the throat. Also, the results show that the presence of the duct breaks the vortices behind the turbine, which reduces the noise level and dynamic forces generated by the rotor. As a result, an auxiliary rotor or other structure can be used behind the turbine.

Suggested Citation

  • Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002165
    DOI: 10.1016/j.energy.2023.126822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Sotoudeh, Freshteh & Kamali, Reza & Mousavi, Seyed Mahmood, 2019. "Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region," Energy, Elsevier, vol. 181(C), pages 745-759.
    3. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "An innovative variable shroud for micro wind turbines," Renewable Energy, Elsevier, vol. 145(C), pages 1061-1072.
    4. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    5. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    6. Randi Franzke & Simone Sebben & Tore Bark & Emil Willeson & Alexander Broniewicz, 2019. "Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan," Energies, MDPI, vol. 12(15), pages 1-14, July.
    7. Pourfattah, Farzad & Sabzpooshani, Majid, 2021. "On the thermal management of a power electronics system: Optimization of the cooling system using genetic algorithm and response surface method," Energy, Elsevier, vol. 232(C).
    8. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).
    9. Kardous, M. & Chaker, R. & Aloui, F. & Nasrallah, S. Ben, 2013. "On the dependence of an empty flanged diffuser performance on flange height: Numerical simulations and PIV visualizations," Renewable Energy, Elsevier, vol. 56(C), pages 123-128.
    10. Ye, Jianjun & Cheng, Yanglin & Xie, Junlong & Huang, Xiaohong & Zhang, Yuan & Hu, Siyao & Salem, Shehab & Wu, Jiejun, 2020. "Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts," Renewable Energy, Elsevier, vol. 152(C), pages 1292-1301.
    11. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    12. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    13. Heikal, Hasim A. & Abu-Elyazeed, Osayed S.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Maged M.S., 2018. "On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine," Renewable Energy, Elsevier, vol. 125(C), pages 295-305.
    14. Shuhei Takahashi & Yuya Hata & Yuji Ohya & Takashi Karasudani & Takanori Uchida, 2012. "Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud," Energies, MDPI, vol. 5(12), pages 1-14, December.
    15. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    16. Toni Pujol & Albert Massaguer & Eduard Massaguer & Lino Montoro & Martí Comamala, 2018. "Net Power Coefficient of Vertical and Horizontal Wind Turbines with Crossflow Runners," Energies, MDPI, vol. 11(1), pages 1-24, January.
    17. Lipian, Michal & Dobrev, Ivan & Massouh, Fawaz & Jozwik, Krzysztof, 2020. "Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngwarai Shambira & Golden Makaka & Patrick Mukumba, 2024. "Velocity Augmentation Model for an Empty Concentrator-Diffuser-Augmented Wind Turbine and Optimisation of Geometrical Parameters Using Surface Response Methodology," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    2. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    2. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    3. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    6. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    7. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    8. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    9. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    10. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    11. Rivarolo, M. & Freda, A. & Traverso, A., 2020. "Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence," Applied Energy, Elsevier, vol. 279(C).
    12. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    13. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    14. Rezek, Thiago J. & Camacho, Ramiro G.R. & Manzanares-Filho, Nelson, 2023. "A novel methodology for the design of diffuser-augmented hydrokinetic rotors," Renewable Energy, Elsevier, vol. 210(C), pages 524-539.
    15. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    16. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    17. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).
    18. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    19. Lipian, Michal & Dobrev, Ivan & Massouh, Fawaz & Jozwik, Krzysztof, 2020. "Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines," Energy, Elsevier, vol. 201(C).
    20. Liu, Jie & Song, Mengxuan & Chen, Kai & Wu, Bingheng & Zhang, Xing, 2016. "An optimization methodology for wind lens profile using Computational Fluid Dynamics simulation," Energy, Elsevier, vol. 109(C), pages 602-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.