IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp722-742.html
   My bibliography  Save this article

A robust methodology for the design optimization of diffuser augmented wind turbine shrouds

Author

Listed:
  • Leloudas, Stavros N.
  • Lygidakis, Georgios N.
  • Eskantar, Alexandros I.
  • Nikolos, Ioannis K.

Abstract

Shrouded wind turbines represent an attractive solution of high potential that could improve significantly the feasibility of renewable energy production at sites characterized by poor wind resources. This work presents the development of a modular optimization scheme for the aerodynamic shape optimization of diffuser-augmented wind turbine (DAWT) shrouds. For the numerical simulation of the incompressible flow field, an axisymmetric RANS solver has been implemented, based on the artificial compressibility method and SST turbulence model. The major features of the RANS solver are demonstrated, while its validity is assessed against both numerical and experimental data. Mesh and geometry parameterization are simultaneously succeeded by employing an in-house developed computational tool, based on the well-known Free-Form Deformation (FFD) technique. The backbone of the optimization framework is formed by a parallel and asynchronous Differential Evolution (DE) algorithm, which is assisted by Artificial Neural Network (ANN) meta-models. The proposed methodology is applied to the design optimization of an axisymmetric shroud (diffuser) for a 15 kW wind turbine, aiming to maximize the mean velocity speed-up ratio and minimize drag, under geometrical constrains. The resulting designs are capable of providing high velocity accelerations, accompanied by considerable reduction in drag and volume.

Suggested Citation

  • Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:722-742
    DOI: 10.1016/j.renene.2019.12.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    2. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    3. Tariq Abdulsalam Khamlaj & Markus Peer Rumpfkeil, 2017. "Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines," Energies, MDPI, vol. 10(1), pages 1-19, January.
    4. Liu, Jie & Song, Mengxuan & Chen, Kai & Wu, Bingheng & Zhang, Xing, 2016. "An optimization methodology for wind lens profile using Computational Fluid Dynamics simulation," Energy, Elsevier, vol. 109(C), pages 602-611.
    5. Sorribes-Palmer, F. & Sanz-Andres, A. & Ayuso, L. & Sant, R. & Franchini, S., 2017. "Mixed CFD-1D wind turbine diffuser design optimization," Renewable Energy, Elsevier, vol. 105(C), pages 386-399.
    6. Kardous, M. & Chaker, R. & Aloui, F. & Nasrallah, S. Ben, 2013. "On the dependence of an empty flanged diffuser performance on flange height: Numerical simulations and PIV visualizations," Renewable Energy, Elsevier, vol. 56(C), pages 123-128.
    7. Sarker, Shiplu, 2016. "Feasibility analysis of a renewable hybrid energy system with producer gas generator fulfilling remote household electricity demand in Southern Norway," Renewable Energy, Elsevier, vol. 87(P1), pages 772-781.
    8. Grassmann, H. & Bet, F. & Cabras, G. & Ceschia, M. & Cobai, D. & DelPapa, C., 2003. "A partially static turbine—first experimental results," Renewable Energy, Elsevier, vol. 28(11), pages 1779-1785.
    9. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    10. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    11. Bet, F & Grassmann, H, 2003. "Upgrading conventional wind turbines," Renewable Energy, Elsevier, vol. 28(1), pages 71-78.
    12. Shuhei Takahashi & Yuya Hata & Yuji Ohya & Takashi Karasudani & Takanori Uchida, 2012. "Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud," Energies, MDPI, vol. 5(12), pages 1-14, December.
    13. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    14. Bontempo, R. & Manna, M., 2014. "Performance analysis of open and ducted wind turbines," Applied Energy, Elsevier, vol. 136(C), pages 405-416.
    15. Khan, Abid A. & Shahzad, Asim & Hayat, Imran & Miah, Md Salim, 2016. "Recovery of flow conditions for optimum electricity generation through micro hydro turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 940-948.
    16. Khan, Abid A. & Khan, Abdul M. & Zahid, M. & Rizwan, R., 2013. "Flow acceleration by converging nozzles for power generation in existing canal system," Renewable Energy, Elsevier, vol. 60(C), pages 548-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).
    3. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    4. Rezek, Thiago J. & Camacho, Ramiro G.R. & Manzanares-Filho, Nelson, 2023. "A novel methodology for the design of diffuser-augmented hydrokinetic rotors," Renewable Energy, Elsevier, vol. 210(C), pages 524-539.
    5. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    6. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    3. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    4. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    5. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    7. Heikal, Hasim A. & Abu-Elyazeed, Osayed S.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Maged M.S., 2018. "On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine," Renewable Energy, Elsevier, vol. 125(C), pages 295-305.
    8. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
    10. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    11. Vaz, Jerson R.P. & Wood, David H., 2018. "Effect of the diffuser efficiency on wind turbine performance," Renewable Energy, Elsevier, vol. 126(C), pages 969-977.
    12. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    13. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    14. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    15. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).
    16. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    17. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    18. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    19. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    20. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:722-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.