IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1656-d115686.html
   My bibliography  Save this article

Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques

Author

Listed:
  • Mohammed Kh. AL-Nussairi

    (Department of Electrical Engineering, College of Engineering, University of Misan, Al-Amarah, Misan 62001, Iraq
    Department of Electrical and Electronic Engineering, Faculty of Engineering, Gazi University, Besevler, Ankara 06500, Turkey)

  • Ramazan Bayindir

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Gazi University, Besevler, Ankara 06500, Turkey)

  • Sanjeevikumar Padmanaban

    (Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy, Norway)

  • Pierluigi Siano

    (Department of Industrial Engineering, University of Salerno, Salerno, 84084 Fisciano (SA), Italy)

Abstract

This paper provides a comprehensive review of the major concepts associated with the μgrid, such as constant power load (CPL), incremental negative resistance or impedance (INR/I) and its dynamic behaviours on the μgrid, and power system distribution (PSD). In general, a μgrid is defined as a cluster of different types of electrical loads and renewable energy sources (distributed generations) under a unified controller within a certain local area. It is considered a perfect solution to integrate renewable energy sources with loads as well as with a traditional grid. In addition, it can operate with a conventional grid, for example, by energy sourcing or a controllable load, or it can operate alone as an islanding mode to feed required electric energy to a grid. Hence, one of the important issues regarding the μgrid is the constant power load that results from the tightly designed control when it is applied to power electronic converters. The effect of CPL is incremental negative resistance that impacts the power quality of a power system and makes it at negative damping. Also, in this paper, a comprehensive study on major control and compensation techniques for μgrid has been included to face the instability effects of constant power loads. Finally, the merits and limitations of the compensation techniques are discussed.

Suggested Citation

  • Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1656-:d:115686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiyong Hu & Xiaoming Wang & Yonggang Peng & Yanghong Xia & Miao Yu & Wei Wei, 2017. "Stability Analysis and Stability Enhancement Based on Virtual Harmonic Resistance for Meshed DC Distributed Power Systems with Constant Power Loads," Energies, MDPI, vol. 10(1), pages 1-15, January.
    2. Sridhar Vavilapalli & Sanjeevikumar Padmanaban & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. Mehrasa, Majid & Pouresmaeil, Edris & Akorede, Mudathir Funsho & Jørgensen, Bo Nørregaard & Catalão, João P.S., 2015. "Multilevel converter control approach of active power filter for harmonics elimination in electric grids," Energy, Elsevier, vol. 84(C), pages 722-731.
    4. Singh, Suresh & Gautam, Aditya R. & Fulwani, Deepak, 2017. "Constant power loads and their effects in DC distributed power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 407-421.
    5. Emre Ozsoy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Viliam Fedák & Fiaz Ahmad & Rasool Akhtar & Asif Sabanovic, 2017. "Control Strategy for a Grid-Connected Inverter under Unbalanced Network Conditions—A Disturbance Observer-Based Decoupled Current Approach," Energies, MDPI, vol. 10(7), pages 1-17, July.
    6. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Pierluigi Siano, 2017. "Investigation on the Development of a Sliding Mode Controller for Constant Power Loads in Microgrids," Energies, MDPI, vol. 10(8), pages 1-24, July.
    7. Swaminathan Ganesan & Sanjeevikumar Padmanaban & Ramesh Varadarajan & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Study and Analysis of an Intelligent Microgrid Energy Management Solution with Distributed Energy Sources," Energies, MDPI, vol. 10(9), pages 1-21, September.
    8. Kalaivani Chandramohan & Sanjeevikumar Padmanaban & Rajambal Kalyanasundaram & Mahajan Sagar Bhaskar & Lucian Mihet-Popa, 2017. "Grid Synchronization of a Seven-Phase Wind Electric Generator Using d-q PLL," Energies, MDPI, vol. 10(7), pages 1-20, July.
    9. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    10. Ahmed Ali & Sanjeevikumar Padmanaban & Bhekisipho Twala & Tshilidzi Marwala, 2017. "Electric Power Grids Distribution Generation System for Optimal Location and Sizing—A Case Study Investigation by Various Optimization Algorithms," Energies, MDPI, vol. 10(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaías V. de Bessa & Renan L. P. de Medeiros & Iury Bessa & Florindo A. C. Ayres Junior & Alessandra R. de Menezes & Gustavo M. Torres & João Edgar Chaves Filho, 2020. "Comparative Study of Control Strategies for Stabilization and Performance Improvement of DC Microgrids with a CPL Connected," Energies, MDPI, vol. 13(10), pages 1-29, May.
    2. Lateef Onaadepo Ibrahim & Youl-Moon Sung & Doosoo Hyun & Minhan Yoon, 2020. "A Feasibility Study of Frequency Regulation Energy Storage System Installation in a Power Plant," Energies, MDPI, vol. 13(20), pages 1-13, October.
    3. Ranjan Kumar & Chandrashekhar N. Bhende, 2023. "Active Damping Stabilization Techniques for Cascaded Systems in DC Microgrids: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Mohamed A. Hassan & Muhammed Y. Worku & Abdelfattah A. Eladl & Mohammed A. Abido, 2021. "Dynamic Stability Performance of Autonomous Microgrid Involving High Penetration Level of Constant Power Loads," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    6. Sebastián Riffo & Walter Gil-González & Oscar Danilo Montoya & Carlos Restrepo & Javier Muñoz, 2022. "Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    7. Antonio Russo & Alberto Cavallo, 2023. "Stability and Control for Buck–Boost Converter for Aeronautic Power Management," Energies, MDPI, vol. 16(2), pages 1-21, January.
    8. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    9. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    10. Jorge Luis Anderson Azzano & Jerónimo J. Moré & Paul F. Puleston, 2019. "Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems," Energies, MDPI, vol. 12(21), pages 1-19, October.
    11. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    12. Subarto Kumar Ghosh & Tushar Kanti Roy & Md. Abu Hanif Pramanik & Md. Apel Mahmud, 2021. "Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs," Energies, MDPI, vol. 14(20), pages 1-16, October.
    13. Martín-Antonio Rodríguez-Licea & Francisco-Javier Pérez-Pinal & Jose-Cruz Nuñez-Perez & Carlos-Alonso Herrera-Ramirez, 2018. "Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads," Energies, MDPI, vol. 11(5), pages 1-20, May.
    14. Sheng Liu & Peng Su & Lanyong Zhang, 2018. "A Nonlinear Disturbance Observer Based Virtual Negative Inductor Stabilizing Strategy for DC Microgrid with Constant Power Loads," Energies, MDPI, vol. 11(11), pages 1-22, November.
    15. Abdelali El Aroudi & Blanca Areli Martínez-Treviño & Enric Vidal-Idiarte & Angel Cid-Pastor, 2019. "Fixed Switching Frequency Digital Sliding-Mode Control of DC-DC Power Supplies Loaded by Constant Power Loads with Inrush Current Limitation Capability," Energies, MDPI, vol. 12(6), pages 1-27, March.
    16. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.
    17. Ishita Ray, 2021. "Review of Impedance-Based Analysis Methods Applied to Grid-Forming Inverters in Inverter-Dominated Grids," Energies, MDPI, vol. 14(9), pages 1-18, May.
    18. Akram M. Abdurraqeeb & Abdullrahman A. Al-Shamma’a & Abdulaziz Alkuhayli & Abdullah M. Noman & Khaled E. Addoweesh, 2022. "RST Digital Robust Control for DC/DC Buck Converter Feeding Constant Power Load," Mathematics, MDPI, vol. 10(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    2. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    3. Ramji Tiwari & Sanjeevikumar Padmanaban & Ramesh Babu Neelakandan, 2017. "Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-17, September.
    4. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    5. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    6. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    7. Hina Fathima A & Kaliannan Palanisamy & Sanjeevikumar Padmanaban & Umashankar Subramaniam, 2018. "Intelligence-Based Battery Management and Economic Analysis of an Optimized Dual-Vanadium Redox Battery (VRB) for a Wind-PV Hybrid System," Energies, MDPI, vol. 11(10), pages 1-18, October.
    8. Sanjeevikumar Padmanaban & Mahajan Sagar Bhaskar & Pandav Kiran Maroti & Frede Blaabjerg & Viliam Fedák, 2018. "An Original Transformer and Switched-Capacitor (T & SC)-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Bo," Energies, MDPI, vol. 11(4), pages 1-23, March.
    9. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    10. Sheng Liu & Peng Su & Lanyong Zhang, 2018. "A Nonlinear Disturbance Observer Based Virtual Negative Inductor Stabilizing Strategy for DC Microgrid with Constant Power Loads," Energies, MDPI, vol. 11(11), pages 1-22, November.
    11. Martín-Antonio Rodríguez-Licea & Francisco-Javier Pérez-Pinal & Jose-Cruz Nuñez-Perez & Carlos-Alonso Herrera-Ramirez, 2018. "Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads," Energies, MDPI, vol. 11(5), pages 1-20, May.
    12. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    14. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    15. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    16. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    17. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    18. Santosh Ghimire & Seyed Morteza Alizadeh, 2021. "Developing a Decision Tree Algorithm for Wind Power Plants Siting and Sizing in Distribution Networks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    19. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    20. Yongda Li & Pingping Gong, 2023. "Fault-Tolerant Control of Induction Motor with Current Sensors Based on Dual-Torque Model," Energies, MDPI, vol. 16(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1656-:d:115686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.