IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6753-d658201.html
   My bibliography  Save this article

Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs

Author

Listed:
  • Subarto Kumar Ghosh

    (Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Tushar Kanti Roy

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Md. Abu Hanif Pramanik

    (Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Md. Apel Mahmud

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

Abstract

This paper proposes a composite nonlinear controller combining backstepping and double-integral sliding mode controllers for DC–DC boost converter (DDBC) feeding by constant power loads (CPLs) to improve the DC-bus voltage stability under large disturbances in DC distribution systems. In this regard, an exact feedback linearization approach is first used to transform the nonlinear dynamical model into a simplified linear system with canonical form so that it becomes suitable for designing the proposed controller. Another important feature of applying the exact feedback linearization approach in this work is to utilize its capability to cancel nonlinearities appearing due to the incremental negative-impedance of CPLs and the non-minimum phase problem related to the DDBC. Second, the proposed backstepping double integral-sliding mode controller (BDI-SMC) is employed on the feedback linearized system to determine the control law. Afterwards, the Lyapunov stability theory is used to analyze the closed-loop stability of the overall system. Finally, a simulation study is conducted under various operating conditions of the system to validate the theoretical analysis of the proposed controller. The simulation results are also compared with existing sliding mode controller (ESMC) and proportional-integral (PI) control schemes to demonstrate the superiority of the proposed BDI-SMC.

Suggested Citation

  • Subarto Kumar Ghosh & Tushar Kanti Roy & Md. Abu Hanif Pramanik & Md. Apel Mahmud, 2021. "Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6753-:d:658201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahsin Fahima Orchi & Md Apel Mahmud & Amanullah Maung Than Oo, 2018. "Generalized Dynamical Modeling of Multiple Photovoltaic Units in a Grid-Connected System for Analyzing Dynamic Interactions," Energies, MDPI, vol. 11(2), pages 1-12, January.
    2. Subarto Kumar Ghosh & Tushar Kanti Roy & Md Abu Hanif Pramanik & Ajay Krishno Sarkar & Md. Apel Mahmud, 2020. "An Energy Management System-Based Control Strategy for DC Microgrids with Dual Energy Storage Systems," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
    4. Abdelali El Aroudi & Blanca Areli Martínez-Treviño & Enric Vidal-Idiarte & Angel Cid-Pastor, 2019. "Fixed Switching Frequency Digital Sliding-Mode Control of DC-DC Power Supplies Loaded by Constant Power Loads with Inrush Current Limitation Capability," Energies, MDPI, vol. 12(6), pages 1-27, March.
    5. Mian Wang & Fen Tang & Xuezhi Wu & Jingkai Niu & Yajing Zhang & Jiuhe Wang, 2021. "A Nonlinear Control Strategy for DC-DC Converter with Unknown Constant Power Load Using Damping and Interconnection Injecting," Energies, MDPI, vol. 14(11), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Isaías V. de Bessa & Renan L. P. de Medeiros & Iury Bessa & Florindo A. C. Ayres Junior & Alessandra R. de Menezes & Gustavo M. Torres & João Edgar Chaves Filho, 2020. "Comparative Study of Control Strategies for Stabilization and Performance Improvement of DC Microgrids with a CPL Connected," Energies, MDPI, vol. 13(10), pages 1-29, May.
    3. Antonio Russo & Alberto Cavallo, 2023. "Stability and Control for Buck–Boost Converter for Aeronautic Power Management," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Abdelali El Aroudi & Blanca Areli Martínez-Treviño & Enric Vidal-Idiarte & Angel Cid-Pastor, 2019. "Fixed Switching Frequency Digital Sliding-Mode Control of DC-DC Power Supplies Loaded by Constant Power Loads with Inrush Current Limitation Capability," Energies, MDPI, vol. 12(6), pages 1-27, March.
    5. Rok Pajer & Amor Chowdhury & Miran Rodič, 2019. "Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation," Energies, MDPI, vol. 12(14), pages 1-26, July.
    6. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    7. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    8. Sheng Liu & Peng Su & Lanyong Zhang, 2018. "A Nonlinear Disturbance Observer Based Virtual Negative Inductor Stabilizing Strategy for DC Microgrid with Constant Power Loads," Energies, MDPI, vol. 11(11), pages 1-22, November.
    9. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    10. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    11. Enric Vidal-Idiarte & Carlos Restrepo & Abdelali El Aroudi & Javier Calvente & Roberto Giral, 2019. "Digital Control of a Buck Converter Based on Input-Output Linearization. An Interpretation Using Discrete-Time Sliding Control Theory," Energies, MDPI, vol. 12(14), pages 1-17, July.
    12. Yuri Bulatov & Andrey Kryukov & Konstantin Suslov, 2022. "Simulation of Power Router-Based DC Distribution Systems with Distributed Generation and Energy Storage Units," Energies, MDPI, vol. 16(1), pages 1-16, December.
    13. Mohamed A. Hassan & Muhammed Y. Worku & Abdelfattah A. Eladl & Mohammed A. Abido, 2021. "Dynamic Stability Performance of Autonomous Microgrid Involving High Penetration Level of Constant Power Loads," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    14. Jorge Luis Anderson Azzano & Jerónimo J. Moré & Paul F. Puleston, 2019. "Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems," Energies, MDPI, vol. 12(21), pages 1-19, October.
    15. Carlos Restrepo & Nicolas Yanẽz-Monsalvez & Catalina González-Castaño & Samir Kouro & Jose Rodriguez, 2021. "A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    16. Christos Yfoulis & Simira Papadopoulou & Spyridon Voutetakis, 2020. "Robust Linear Control of Boost and Buck-Boost DC-DC Converters in Micro-Grids with Constant Power Loads," Energies, MDPI, vol. 13(18), pages 1-21, September.
    17. Akram M. Abdurraqeeb & Abdullrahman A. Al-Shamma’a & Abdulaziz Alkuhayli & Abdullah M. Noman & Khaled E. Addoweesh, 2022. "RST Digital Robust Control for DC/DC Buck Converter Feeding Constant Power Load," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    18. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    19. Sebastián Riffo & Walter Gil-González & Oscar Danilo Montoya & Carlos Restrepo & Javier Muñoz, 2022. "Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    20. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6753-:d:658201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.