IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2738-d249210.html
   My bibliography  Save this article

Digital Control of a Buck Converter Based on Input-Output Linearization. An Interpretation Using Discrete-Time Sliding Control Theory

Author

Listed:
  • Enric Vidal-Idiarte

    (Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Carlos Restrepo

    (Department of Electromechanics and Energy Conversion, Universidad de Talca, Curicó 3340000, Chile)

  • Abdelali El Aroudi

    (Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Javier Calvente

    (Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Roberto Giral

    (Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

Abstract

This paper presents the analysis and design of a PWM nonlinear digital control of a buck converter based on input-output linearization. The control employs a discrete-time bilinear model of the power converter for continuous conduction mode operation (CCM) to create an internal current control loop wherein the inductor current error with respect to its reference decreases to zero in geometric progression. This internal loop is as a constant frequency discrete-time sliding mode control loop with a parameter that allows adjusting how fast the error is driven to zero. Subsequently, an outer voltage loop designed by linear techniques provides the reference of the inner current loop to regulate the converter output voltage. The two-loop control offers a fast transient response and a high regulation degree of the output voltage in front of reference changes and disturbances in the input voltage and output load. The experimental results are in good agreement with both theoretical predictions and PSIM simulations.

Suggested Citation

  • Enric Vidal-Idiarte & Carlos Restrepo & Abdelali El Aroudi & Javier Calvente & Roberto Giral, 2019. "Digital Control of a Buck Converter Based on Input-Output Linearization. An Interpretation Using Discrete-Time Sliding Control Theory," Energies, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2738-:d:249210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelali El Aroudi & Blanca Areli Martínez-Treviño & Enric Vidal-Idiarte & Angel Cid-Pastor, 2019. "Fixed Switching Frequency Digital Sliding-Mode Control of DC-DC Power Supplies Loaded by Constant Power Loads with Inrush Current Limitation Capability," Energies, MDPI, vol. 12(6), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Latosiński & Andrzej Bartoszewicz, 2021. "Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties," Energies, MDPI, vol. 14(11), pages 1-16, May.
    2. Wei Wang & Gaoshuai Shen & Run Min & Qiaoling Tong & Qiao Zhang & Zhenglin Liu, 2020. "State Switched Discrete-Time Model and Digital Predictive Voltage Programmed Control for Buck Converters," Energies, MDPI, vol. 13(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Rok Pajer & Amor Chowdhury & Miran Rodič, 2019. "Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation," Energies, MDPI, vol. 12(14), pages 1-26, July.
    3. Isaías V. de Bessa & Renan L. P. de Medeiros & Iury Bessa & Florindo A. C. Ayres Junior & Alessandra R. de Menezes & Gustavo M. Torres & João Edgar Chaves Filho, 2020. "Comparative Study of Control Strategies for Stabilization and Performance Improvement of DC Microgrids with a CPL Connected," Energies, MDPI, vol. 13(10), pages 1-29, May.
    4. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    5. Subarto Kumar Ghosh & Tushar Kanti Roy & Md. Abu Hanif Pramanik & Md. Apel Mahmud, 2021. "Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. Carlos Restrepo & Nicolas Yanẽz-Monsalvez & Catalina González-Castaño & Samir Kouro & Jose Rodriguez, 2021. "A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    7. Christos Yfoulis & Simira Papadopoulou & Spyridon Voutetakis, 2020. "Robust Linear Control of Boost and Buck-Boost DC-DC Converters in Micro-Grids with Constant Power Loads," Energies, MDPI, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2738-:d:249210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.