IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1623-d115379.html
   My bibliography  Save this article

A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables

Author

Listed:
  • Xiaoyang Deng

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Jinghan He

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Pei Zhang

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

The traditional cumulant method (CM) for probabilistic optimal power flow (P-OPF) needs to perform linearization on the Karush–Kuhn–Tucker (KKT) first-order conditions, therefore requiring input variables (wind power or loads) varying within small ranges. To handle large fluctuations resulting from large-scale wind power and loads, a novel P-OPF method is proposed, where the correlations among input variables are also taken into account. Firstly, the inverse Nataf transformation and Cholesky decomposition are used to obtain samples of wind speeds and loads with a given correlation matrix. Then, the K-means algorithm is introduced to group the samples of wind power outputs and loads into a number of clusters, so that in each cluster samples of stochastic variables have small variances. In each cluster, the CM for P-OPF is conducted to obtain the cumulants of system variables. According to these cumulants, the moments of system variables corresponding to each cluster are computed. The moments of system variables for the total samples are obtained by combining the moments for all grouped clusters through the total probability formula. Then, the moments for the total samples are used to calculate the corresponding cumulants. Finally, Cornish–Fisher expansion is introduced to obtain the probability density functions (PDFs) of system variables. IEEE 9-bus and 118-bus test systems are modified to examine the proposed method. Study results show that the proposed method can produce more accurate results than traditional CM for P-OPF and is more efficient than Monte Carlo simulation (MCS).

Suggested Citation

  • Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1623-:d:115379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    2. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    3. Jun Liu & Xudong Hao & Peifen Cheng & Wanliang Fang & Shuanbao Niu, 2016. "A Parallel Probabilistic Load Flow Method Considering Nodal Correlations," Energies, MDPI, vol. 9(12), pages 1-16, December.
    4. Aien, Morteza & Rashidinejad, Masoud & Firuz-Abad, Mahmud Fotuhi, 2015. "Probabilistic optimal power flow in correlated hybrid wind-PV power systems: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1437-1446.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Gang Zhou & Jianxun Shi & Bingjing Chen & Zhongyi Qi & Licheng Wang, 2023. "Risk Assessment of Power Supply Security Considering Optimal Load Shedding in Extreme Precipitation Scenarios," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Yue Chen & Zhizhong Guo & Hongbo Li & Yi Yang & Abebe Tilahun Tadie & Guizhong Wang & Yingwei Hou, 2020. "Probabilistic Optimal Power Flow for Day-Ahead Dispatching of Power Systems with High-Proportion Renewable Power Sources," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    4. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    5. Jérôme Buire & Frédéric Colas & Jean-Yves Dieulot & Xavier Guillaud, 2019. "Stochastic Optimization of PQ Powers at the Interface between Distribution and Transmission Grids," Energies, MDPI, vol. 12(21), pages 1-16, October.
    6. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    7. Pei Bie & Buhan Zhang & Hang Li & Yong Wang & Le Luan & Guoyan Chen & Guojun Lu, 2017. "Chance-Constrained Real-Time Dispatch with Renewable Uncertainty Based on Dynamic Load Flow," Energies, MDPI, vol. 10(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    2. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    3. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    4. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    5. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    6. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    7. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    8. Sui Peng & Huixiang Chen & Yong Lin & Tong Shu & Xingyu Lin & Junjie Tang & Wenyuan Li & Weijie Wu, 2019. "Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling," Energies, MDPI, vol. 12(16), pages 1-21, August.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    11. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    12. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    13. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    15. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    16. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    17. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    18. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    20. Ziwei Zhu & Shifan Lu & Sui Peng, 2018. "An Improved Stochastic Response Surface Method Based Probabilistic Load Flow for Studies on Correlated Wind Speeds in the AC/DC Grid," Energies, MDPI, vol. 11(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1623-:d:115379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.