Forecasting Asset Returns Using Nelson–Siegel Factors Estimated from the US Yield Curve
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Carlo A. Favero & Linlin Niu & Luca Sala, 2012.
"Term Structure Forecasting: No‐Arbitrage Restrictions versus Large Information Set,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 124-156, March.
- Carlo A. Favero & Linlin Niu & Luca Sala, 2013. "Term Structure Forecasting: No-arbitrage Restrictions Versus Large Information set," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Pesando, James E, 1979. "On the Random Walk Characteristics of Short- and Long-Term Interest Rates in an Efficient Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 11(4), pages 457-466, November.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- James M. Steeley, 2014. "Forecasting the Term Structure when Short‐Term Rates are Near Zero," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(5), pages 350-363, August.
- Wolfgang Drobetz & Susanne Stürmer & Heinz Zimmermann, 2002. "Conditional Asset Pricing in Emerging Stock Markets," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 138(IV), pages 507-526, December.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
- Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006.
"The macroeconomy and the yield curve: a dynamic latent factor approach,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
- Francis X. Diebold & Glenn D. Rudebusch & S. Boragan Aruoba, 2004. "The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach," NBER Working Papers 10616, National Bureau of Economic Research, Inc.
- Guidolin, Massimo & McMillan, David G. & Wohar, Mark E., 2013. "Time varying stock return predictability: Evidence from US sectors," Finance Research Letters, Elsevier, vol. 10(1), pages 34-40.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015.
"Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty,"
SIRE Discussion Papers
2015-71, Scottish Institute for Research in Economics (SIRE).
- Byrne, JP & Cao, S & Korobilis, D, 2016. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," Essex Finance Centre Working Papers 18195, University of Essex, Essex Business School.
- Joseph P. Byrne & Shuo Cao. & Dimitris Korobilis., 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," Working Papers 2015_08, Business School - Economics, University of Glasgow.
- Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," MPRA Paper 63844, University Library of Munich, Germany.
- Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
- Wali ULLAH & Khadija Malik BARI, 2018. "The Term Structure of Government Bond Yields in an Emerging Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 5-28, September.
- P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Fausto Vieira & Fernando Chague, Marcelo Fernandes, 2016.
"A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US,"
Working Papers, Department of Economics
2016_31, University of São Paulo (FEA-USP).
- Vieira, Fausto José Araújo & Chague, Fernando Daniel & Fernandes, Marcelo, 2017. "A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US," Textos para discussão 445, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Zhikai Zhang & Yaojie Zhang & Yudong Wang, 2024. "Forecasting the equity premium using weighted regressions: Does the jump variation help?," Empirical Economics, Springer, vol. 66(5), pages 2049-2082, May.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Leo Krippner & Michelle Lewis, 2018. "Real-time forecasting with macro-finance models in the presence of a zero lower bound," Reserve Bank of New Zealand Discussion Paper Series DP2018/04, Reserve Bank of New Zealand.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018.
"Forecasting Bond Yields with Segmented Term Structure Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
- Caio Almeida & Axel Simonsen & José Valentim Vicente, 2012. "Forecasting Bond Yields with Segmented Term Structure Models," Working Papers Series 288, Central Bank of Brazil, Research Department.
- Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019.
"Bond Return Predictability: Economic Value and Links to the Macroeconomy,"
Management Science, INFORMS, vol. 65(2), pages 508-540, February.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75R, Brandeis University, Department of Economics and International Business School, revised Jul 2016.
- Guidolin, Massimo & Thornton, Daniel L., 2018.
"Predictions of short-term rates and the expectations hypothesis,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
- Massimo Guidolin & Daniel L. Thornton, 2010. "Predictions of short-term rates and the expectations hypothesis," Working Papers 2010-013, Federal Reserve Bank of St. Louis.
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Shang, Yuhuang & Zheng, Tingguo, 2018. "Fitting and forecasting yield curves with a mixed-frequency affine model: Evidence from China," Economic Modelling, Elsevier, vol. 68(C), pages 145-154.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
- Lelo de Larrea Alejandra, 2020. "Forecast Comparison of the Term Structure of Interest Rates of Mexico for Different Specifications of the Affine Model," Working Papers 2020-01, Banco de México.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
More about this item
Keywords
Nelson–Siegel model; forecasting; asset return prediction; yield curve dynamics; systematic risk factors; Diebold–Mariano test; model confidence set;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:13:y:2025:i:2:p:17-:d:1632780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.