IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i3p69-d1723131.html
   My bibliography  Save this article

Analysis of Biodiesel from Algae Using the SWOT-AHP Method: Strategic Insights for a Green Energy Future

Author

Listed:
  • Mladen Bošnjaković

    (Technical Department, University of Slavonski Brod, Ulica 108. Brigade ZNG 36, 35000 Slavonski Brod, Croatia)

  • Robert Santa

    (Department of Mechanical Engineering and Material Sciences, Institute of Engineering Sciences, University of Dunaújváros, Táncsics Mihály 1/A, 2400 Dunaújváros, Hungary
    Aziz Sanjar Food Safety Laboratory, Azerbaijan State University of Economics (UNEC), 6, Istiglaliyyat Str., Baku AZ1001, Azerbaijan)

  • Antonija Vučić

    (Farmaceutsko-Biokemijski Fakultet, Sveučilišta u Zagrebu, A. Kovačića 1, 10000 Zagreb, Croatia)

  • Zoran Crnac

    (Technical School, E. Kumičića 55, 35000 Slavonski Brod, Croatia)

Abstract

Algal biodiesel is a promising renewable energy source due to its high lipid productivity and environmental benefits compared to conventional diesel fuels. This study presents a SWOT technique (strengths, weaknesses, opportunities, and threats) and an analytical hierarchy process (AHP) to assess the current status and future prospects of algae-based biodiesel production. Data from the last decade on algae production was analysed, highlighting significant technological improvements such as genetic engineering, novel extraction techniques, and integration with circular economy approaches. The results show that algal biodiesel can achieve a lipid content of up to 75% of dry biomass and reduce greenhouse gas emissions by up to 90% compared to fossil diesel. Key strengths include high biomass yield and effective CO 2 sequestration, while challenges include scaling production and reducing capital costs. Opportunities lie in product diversification and policy support, while threats include competition from battery electric vehicles and regulatory barriers. The AHP analysis provides a quantitative framework for prioritising strategies to improve the economic viability and environmental sustainability of algae biodiesel. In the short term (by 2030), algae-based biodiesel is expected to be used mainly as a blend with fossil diesel and to gain traction in niche applications where electric vehicles face competitiveness challenges (marine and heavy road transport). In the long term (by 2050), algae-based biodiesel will play a role in certain sectors that are integrated into the circular economy.

Suggested Citation

  • Mladen Bošnjaković & Robert Santa & Antonija Vučić & Zoran Crnac, 2025. "Analysis of Biodiesel from Algae Using the SWOT-AHP Method: Strategic Insights for a Green Energy Future," Clean Technol., MDPI, vol. 7(3), pages 1-25, August.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:3:p:69-:d:1723131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/3/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/3/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    2. Chen, Peter H. & Quinn, Jason C., 2021. "Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment," Applied Energy, Elsevier, vol. 289(C).
    3. Hee Seung Moon & Won Young Park & Thomas Hendrickson & Amol Phadke & Natalie Popovich, 2025. "Exploring the cost and emissions impacts, feasibility and scalability of battery electric ships," Nature Energy, Nature, vol. 10(1), pages 41-54, January.
    4. Ankit Sonthalia & Naveen Kumar, 2023. "Performance Improvement and Emission Reduction Potential of Blends of Hydrotreated Used Cooking Oil, Biodiesel and Diesel in a Compression Ignition Engine," Energies, MDPI, vol. 16(21), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braud, L. & McDonnell, K. & Murphy, F., 2023. "Environmental life cycle assessment of algae systems: Critical review of modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    3. Pranav Nakhate & Yvonne van der Meer, 2021. "A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    4. Maria Hasnain & Neelma Munir & Zainul Abideen & Heather Macdonald & Maria Hamid & Zaheer Abbas & Ali El-Keblawy & Roberto Mancinelli & Emanuele Radicetti, 2023. "Prospects for Biodiesel Production from Emerging Algal Resource: Process Optimization and Characterization of Biodiesel Properties," Agriculture, MDPI, vol. 13(2), pages 1-29, February.
    5. Pachón, Elia Ruiz & Vaskan, Pavel & Raman, Jegannathan Kenthorai & Gnansounou, Edgard, 2018. "Transition of a South African sugar mill towards a biorefinery. A feasibility assessment," Applied Energy, Elsevier, vol. 229(C), pages 1-17.
    6. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    7. Lukáš Krátký & Stanislaw Ledakowicz & Radoslaw Slezak & Vojtěch Bělohlav & Peter Peciar & Máté Petrik & Tomáš Jirout & Marián Peciar & Zoltán Siménfalvi & Radek Šulc & Zoltán Szamosi, 2024. "Emerging Sustainability in Carbon Capture and Use Strategies for V4 Countries via Biochemical Pathways: A Review," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    8. Benjamin W. Portner & Antonio Valente & Sandy Guenther, 2021. "Sustainability Assessment of Combined Animal Fodder and Fuel Production from Microalgal Biomass," IJERPH, MDPI, vol. 18(21), pages 1-18, October.
    9. Sahar Safarian & Sorena Sattari & Zeinab Hamidzadeh, 2018. "Sustainability Assessment of Biodiesel Supply Chain from Various Biomasses and Conversion Technologies," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-15, June.
    10. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP," Applied Energy, Elsevier, vol. 180(C), pages 338-352.
    11. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    12. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    13. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    14. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    15. Feng, Weiliang & Xiong, Huan & Wang, Weiguo & Duan, Xiaoling & Yang, Tong & Wu, Cheng & Yang, Fang & Xiong, Jing & Wang, Teilin & Wang, Cunwen, 2019. "Energy consumption analysis of lipid extraction from black soldier fly biomass," Energy, Elsevier, vol. 185(C), pages 1076-1085.
    16. Sun, Yingqiang & Xu, Chunyan & Igou, Thomas & Liu, Peilu & Hu, Zixuan & Van Ginkel, Steven W. & Chen, Yongsheng, 2018. "Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica," Applied Energy, Elsevier, vol. 226(C), pages 461-468.
    17. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    18. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    19. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    20. Arun, J. & Raghu, R. & Suhail Madhar Hanif, S. & Thilak, P.G. & Sridhar, D. & Nirmala, N. & Dawn, S.S. & Sivaramakrishnan, R. & Chi, Nguyen Thuy Lan & Pugazhendhi, Arivalagan, 2022. "A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:3:p:69-:d:1723131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.