IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v2y2020i2p14-224d373700.html
   My bibliography  Save this article

Critical Review on Efficiency of Ground Heat Exchangers in Heat Pump Systems

Author

Listed:
  • Adel Eswiasi

    (Department of Mechanical Engineering, Faculty of Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada)

  • Phalguni Mukhopadhyaya

    (Department of Civil Engineering, Faculty of Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada)

Abstract

Use of ground source heat pumps has increased significantly in recent years for space heating and cooling of residential houses and commercial buildings, in both heating (i.e., cold region) and cooling (i.e., warm region) dominated climates, due to its low carbon footprint. Ground source heat pumps exploit the passive energy storage capacity of the ground for heating and cooling of buildings. The main focus of this paper is to critically review how different construction and operation parameters (e.g., pipe configuration, pipe diameter, grout, heat injection rate, and volumetric flow rate) have an impact on the thermal efficiency of the vertical ground heat exchanger (VGHE) in a ground source heat pump (GSHP) system. The published literatures indicate that thermal performance of VGHEs increases with an increase of borehole diameter and/or pipe diameter. These literatures show that the borehole thermal resistance of VGHEs decreases within a range of 9% to 52% due to pipe configurations and grout materials. Furthermore, this paper also identifies the scope to increase the thermal efficiency of VGHE. The authors conclude that in order to enhance the heat transfer rate in VGHE, any attempt to increase the surface area of the pipe configuration would likely be an effective solution.

Suggested Citation

  • Adel Eswiasi & Phalguni Mukhopadhyaya, 2020. "Critical Review on Efficiency of Ground Heat Exchangers in Heat Pump Systems," Clean Technol., MDPI, vol. 2(2), pages 1-21, June.
  • Handle: RePEc:gam:jcltec:v:2:y:2020:i:2:p:14-224:d:373700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/2/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/2/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Luo & Joachim Rohn & Manfred Bayer & Anna Priess, 2013. "Thermal Efficiency Comparison of Borehole Heat Exchangers with Different Drillhole Diameters," Energies, MDPI, vol. 6(8), pages 1-20, August.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Sharqawy, Mostafa H. & Said, S.A. & Mokheimer, E.M. & Habib, M.A. & Badr, H.M. & Al-Shayea, N.A., 2009. "First in situ determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia," Renewable Energy, Elsevier, vol. 34(10), pages 2218-2223.
    4. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    5. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Pedro Carrasco García & Luis Santiago Sánchez Pérez & Diego González-Aguilera, 2017. "Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger," Energies, MDPI, vol. 10(2), pages 1-15, February.
    6. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    7. Gustafsson, A.-M. & Westerlund, L., 2010. "Multi-injection rate thermal response test in groundwater filled borehole heat exchanger," Renewable Energy, Elsevier, vol. 35(5), pages 1061-1070.
    8. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    9. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2022. "Impact of thermosiphoning on long-term behavior of closed-loop deep geothermal systems for sustainable energy exploitation," Renewable Energy, Elsevier, vol. 194(C), pages 1247-1260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    3. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    4. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    5. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    6. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    8. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    9. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    11. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    12. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    13. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    14. Khaled Salhein & C. J. Kobus & Mohamed Zohdy, 2022. "Control of Heat Transfer in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 15(14), pages 1-24, July.
    15. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    16. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    17. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    18. Cristina Sáez Blázquez & Laura Piedelobo & Jesús Fernández-Hernández & Ignacio Martín Nieto & Arturo Farfán Martín & Susana Lagüela & Diego González-Aguilera, 2020. "Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-22, March.
    19. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    20. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:2:y:2020:i:2:p:14-224:d:373700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.