IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i7p731-d1623155.html
   My bibliography  Save this article

Determination of Optimal Dataset Characteristics for Improving YOLO Performance in Agricultural Object Detection

Author

Listed:
  • Jisu Song

    (Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea)

  • Dongseok Kim

    (Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea)

  • Eunji Jeong

    (Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea)

  • Jaesung Park

    (Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea)

Abstract

Recent advances in artificial intelligence and computer vision have led to significant progress in the use of agricultural technologies for yield prediction, pest detection, and real-time monitoring of plant conditions. However, collecting large-scale, high-quality image datasets in the agriculture sector remains challenging, particularly for specialized datasets such as plant disease images. This study analyzed the effects of the image size (320–640+) and the number of labels on the performance of a YOLO-based object detection model using diverse agricultural datasets for strawberries, tomatoes, chilies, and peppers. Model performance was evaluated using the intersection over union and average precision (AP), where the AP curve was smoothed using the Savitzky–Golay filter and EEM. The results revealed that increasing the number of labels improved the model performance to a certain degree, after which the performance gradually diminished. Furthermore, while increasing the image size from 320 to 640 substantially enhanced the model performance, additional increases beyond 640 yielded only marginal improvements. However, the training time and graphics processing unit usage scaled linearly with increasing image sizes, as larger size images require greater computational resources. These findings underscore the importance of an optimal strategy for selecting the image size and label quantity under resource constraints in real-world model development.

Suggested Citation

  • Jisu Song & Dongseok Kim & Eunji Jeong & Jaesung Park, 2025. "Determination of Optimal Dataset Characteristics for Improving YOLO Performance in Agricultural Object Detection," Agriculture, MDPI, vol. 15(7), pages 1-30, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:731-:d:1623155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/7/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/7/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenglin Wang & Haoming Wang & Qiyu Han & Zhaoguo Zhang & Dandan Kong & Xiangjun Zou, 2024. "Strawberry Detection and Ripeness Classification Using YOLOv8+ Model and Image Processing Method," Agriculture, MDPI, vol. 14(5), pages 1-17, May.
    2. Xulu Gong & Shujuan Zhang, 2023. "A High-Precision Detection Method of Apple Leaf Diseases Using Improved Faster R-CNN," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    3. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Sun & Qi Zheng & Weixiang Yao & Junyong Wang & Changliang Liu & Huiduo Yu & Chunling Chen, 2025. "An Improved YOLOv8 Model for Detecting Four Stages of Tomato Ripening and Its Application Deployment in a Greenhouse Environment," Agriculture, MDPI, vol. 15(9), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Jinxian Tao & Xiaoli Li & Yong He & Muhammad Adnan Islam, 2025. "CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments," Agriculture, MDPI, vol. 15(8), pages 1-20, April.
    3. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Liu, Mingyuan & He, Wei & Ma, Ning & Zhu, Hailong & Zhou, Guohui, 2025. "A new reliability health status assessment model for complex systems based on belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    6. Chen, Bingyang & Zeng, Xingjie & Liu, Chao & Xu, Yafei & Cao, Heling, 2025. "Health management of power batteries in low temperatures based on Adaptive Transfer Enformer framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    7. Chen, Zhen & Wang, Zirong & Wu, Wei & Xia, Tangbin & Pan, Ershun, 2024. "A hybrid battery degradation model combining arrhenius equation and neural network for capacity prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Chen, Bingyang & Wang, Kai & Xu, Degang & Xia, Juan & Fan, Lulu & Zhou, Jiehan, 2024. "Global–local attention network and value-informed federated strategy for predicting power battery state of health," Energy, Elsevier, vol. 313(C).
    9. Cao, Zhi & Gao, Wei & Fu, Yuhong & Kurdkandi, Naser Vosoughi & Mi, Chris, 2025. "A general framework for lithium-ion battery state of health estimation: From laboratory tests to machine learning with transferability across domains," Applied Energy, Elsevier, vol. 381(C).
    10. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).
    11. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:731-:d:1623155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.