IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1223-d1671428.html
   My bibliography  Save this article

Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery

Author

Listed:
  • Jiamuyang Zhao

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shuxiang Fan

    (School of Technology, Beijing Forestry University, Beijing 100083, China)

  • Baohua Zhang

    (College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China)

  • Aichen Wang

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of Jiangsu University, Zhenjiang 212013, China)

  • Liyuan Zhang

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qingzhen Zhu

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of Jiangsu University, Zhenjiang 212013, China)

Abstract

With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, DRL can help UAVs plan more efficient flight paths to cover more areas in less time. To enhance the systematicity and credibility of this review, this paper systematically examines the application status, key issues, and development trends of DRL in agricultural scenarios, based on the research literature from mainstream Chinese and English databases spanning from 2018 to 2024. From the perspective of algorithm–hardware synergy, the article provides an in-depth analysis of DRL’s specific applications in agricultural ground platform navigation, path planning for intelligent agricultural end-effectors, and autonomous operations of low-altitude unmanned aerial vehicles. It highlights the technical advantages of DRL by integrating typical experimental outcomes, such as improved path-tracking accuracy and optimized spraying coverage. Meanwhile, this paper identifies three major challenges facing DRL in agricultural contexts: the difficulty of dynamic path planning in unstructured environments, constraints imposed by edge computing resources on algorithmic real-time performance, and risks to policy reliability and safety under human–machine collaboration conditions. Looking forward, the DRL-driven smart transformation of agricultural machinery will focus on three key aspects: (1) The first aspect is developing a hybrid decision-making architecture based on model predictive control (MPC). This aims to enhance the strategic stability and decision-making interpretability of agricultural machinery (like unmanned tractors, harvesters, and drones) in complex and dynamic field environments. This is essential for ensuring the safe and reliable autonomous operation of machinery. (2) The second aspect is designing lightweight models that support edge-cloud collaborative deployment. This can meet the requirements of low-latency responses and low-power operation in edge computing scenarios during field operations, providing computational power for the real-time intelligent decision-making of machinery. (3) The third aspect is integrating meta-learning with self-supervised mechanisms. This helps improve the algorithm’s fast generalization ability across different crop types, climates, and geographical regions, ensuring the smart agricultural machinery system has broad adaptability and robustness and accelerating its application in various agricultural settings. This paper proposes research directions from three key dimensions-“algorithm capability enhancement, deployment architecture optimization, and generalization ability improvement”-offering theoretical references and practical pathways for the continuous evolution of intelligent agricultural equipment.

Suggested Citation

  • Jiamuyang Zhao & Shuxiang Fan & Baohua Zhang & Aichen Wang & Liyuan Zhang & Qingzhen Zhu, 2025. "Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery," Agriculture, MDPI, vol. 15(11), pages 1-25, June.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1223-:d:1671428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenjing Zhu & Zhankang Feng & Shiyuan Dai & Pingping Zhang & Xinhua Wei, 2022. "Using UAV Multispectral Remote Sensing with Appropriate Spatial Resolution and Machine Learning to Monitor Wheat Scab," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
    2. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    3. Guanyi Liu & Xuewei Li & Yumeng Mao & Jingxiao Sun & Dehan Jiao & Xuemei Li, 2024. "Research on Path Planning of Mobile Robot Based on Improved Immune-Ant Colony Algorithm," Lecture Notes in Operations Research, in: Menggang Li & Hua Guowei & Anqiang Huang & Xiaowen Fu & Dan Chang (ed.), Ieis 2023, pages 185-197, Springer.
    4. Bingbo Cui & Xinyu Cui & Xinhua Wei & Yongyun Zhu & Zhen Ma & Yan Zhao & Yufei Liu, 2024. "Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    2. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    3. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    4. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    5. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    6. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    7. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    8. Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
    9. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    10. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    11. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    12. Zhang, Huixian & Wei, Xiukun & Liu, Zhiqiang & Ding, Yaning & Guan, Qingluan, 2025. "Condition-based maintenance for multi-state systems with prognostic and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    13. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    14. Ande Chang & Yuting Ji & Chunguang Wang & Yiming Bie, 2024. "CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    15. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    16. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    17. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
    18. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    19. Holger Mohr & Katharina Zwosta & Dimitrije Markovic & Sebastian Bitzer & Uta Wolfensteller & Hannes Ruge, 2018. "Deterministic response strategies in a trial-and-error learning task," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-19, November.
    20. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1223-:d:1671428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.