IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1223-d1671428.html
   My bibliography  Save this article

Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery

Author

Listed:
  • Jiamuyang Zhao

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shuxiang Fan

    (School of Technology, Beijing Forestry University, Beijing 100083, China)

  • Baohua Zhang

    (College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China)

  • Aichen Wang

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of Jiangsu University, Zhenjiang 212013, China)

  • Liyuan Zhang

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qingzhen Zhu

    (School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of Jiangsu University, Zhenjiang 212013, China)

Abstract

With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, DRL can help UAVs plan more efficient flight paths to cover more areas in less time. To enhance the systematicity and credibility of this review, this paper systematically examines the application status, key issues, and development trends of DRL in agricultural scenarios, based on the research literature from mainstream Chinese and English databases spanning from 2018 to 2024. From the perspective of algorithm–hardware synergy, the article provides an in-depth analysis of DRL’s specific applications in agricultural ground platform navigation, path planning for intelligent agricultural end-effectors, and autonomous operations of low-altitude unmanned aerial vehicles. It highlights the technical advantages of DRL by integrating typical experimental outcomes, such as improved path-tracking accuracy and optimized spraying coverage. Meanwhile, this paper identifies three major challenges facing DRL in agricultural contexts: the difficulty of dynamic path planning in unstructured environments, constraints imposed by edge computing resources on algorithmic real-time performance, and risks to policy reliability and safety under human–machine collaboration conditions. Looking forward, the DRL-driven smart transformation of agricultural machinery will focus on three key aspects: (1) The first aspect is developing a hybrid decision-making architecture based on model predictive control (MPC). This aims to enhance the strategic stability and decision-making interpretability of agricultural machinery (like unmanned tractors, harvesters, and drones) in complex and dynamic field environments. This is essential for ensuring the safe and reliable autonomous operation of machinery. (2) The second aspect is designing lightweight models that support edge-cloud collaborative deployment. This can meet the requirements of low-latency responses and low-power operation in edge computing scenarios during field operations, providing computational power for the real-time intelligent decision-making of machinery. (3) The third aspect is integrating meta-learning with self-supervised mechanisms. This helps improve the algorithm’s fast generalization ability across different crop types, climates, and geographical regions, ensuring the smart agricultural machinery system has broad adaptability and robustness and accelerating its application in various agricultural settings. This paper proposes research directions from three key dimensions-“algorithm capability enhancement, deployment architecture optimization, and generalization ability improvement”-offering theoretical references and practical pathways for the continuous evolution of intelligent agricultural equipment.

Suggested Citation

  • Jiamuyang Zhao & Shuxiang Fan & Baohua Zhang & Aichen Wang & Liyuan Zhang & Qingzhen Zhu, 2025. "Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery," Agriculture, MDPI, vol. 15(11), pages 1-25, June.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1223-:d:1671428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1223/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1223-:d:1671428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.