IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1115-d1661733.html
   My bibliography  Save this article

Variation and QTL Analysis of Dynamic Tillering in Rice Under Nitrogen and Straw Return Treatments

Author

Listed:
  • Yang Shui

    (Zigong Academy of Agricultural Science, Zigong 643000, China
    These authors contributed equally to this work.)

  • Faping Guo

    (Yazhouwan National Laboratory, Sanya 572704, China
    These authors contributed equally to this work.)

  • Youlin Peng

    (Yazhouwan National Laboratory, Sanya 572704, China)

  • Wei Yin

    (Zigong Academy of Agricultural Science, Zigong 643000, China)

  • Pan Qi

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Yungao Hu

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Shengmin Yan

    (Zigong Academy of Agricultural Science, Zigong 643000, China)

Abstract

Rice tillering is an important trait that is genetically and environmentally co-regulated. Nitorgen is one of the key nutrients affecting tillering, and straw return further affects tiller development by altering soil heterogeneity. In order to analyze the genetic regulation mechanism of rice tillering and its interactions with the environment, 124 recombinant inbred line (RIL) populations derived from two superior Peijiu lines, 9311 and PA64s, were used as materials in this study, and the dynamic tillering phenotypes were measured under three treatments (no nitrogen application, nitrogen application, and nitrogen + straw return) for two consecutive years. Using an existing genetic map, we conducted single-environment, multi-environment, and meta-QTL analyses to systematically identify tiller-related genetic loci and their environmental interactions. The main findings were as follows: (1) A total of 57 QTLs were identified in the single-environment QTL analysis, of which 44 were unreported new QTLs. Four QTLs showed temporal pleiotropy, ten QTLs contributed more than 10% to the phenotypes under the no-N treatment, and five QTLs contributed more than 10% under the straw return treatment. Among them, the phenotypic contribution of mks1-355 ( qD1tn1-3 ) and mks1-352 ( qD2TN1-2 ) both exceeded 40%. (2) Multi-environmental QTL analysis detected 15 QTLs. Of these, qmD1TN1 (mks1-356) showed no environmental interaction effect, while qmD1TN12 (mks12-267), qmD2TN1 (mks1-334), qmD2TN3-1 (mks3-105), and qmD5TN6 (mks6-71) exhibited antagonistic pleiotropy, suggesting that these QTL need to be considered for environmental specificity in breeding. (3) Meta-QTL analysis localized 52 MQTLs, of which MQTL3.1 and MQTL6.8 contained 82 and 59 candidate genes, respectively, and no reported tiller-related genes were found. (4) mks1-355 ( qD1tn1-3 ), mks1-352 ( qD2TN1-2 ), and mks1-356 ( qmD1TN1 ) may be located in the same genetic locus, and their phenotypic contributions were more than 40%. These QTLs were detected stably for two consecutive years, and they may be the main effector QTLs in tillering that are less affected by the environment. Further analysis revealed that these QTLs corresponded to MQTL1.6, which contains 56 candidate genes. Of these, the expression level of OsSPL2 gene in the parental line 9311 was significantly higher than that of PA64s, and there were polymorphic differences in the coding region. It was hypothesized that OsSPL2 was the main effector gene of this QTL. This study provides important genetic resources for mining candidate genes related to tillering and nitrogen efficiency in rice and lays a theoretical foundation for directional breeding and molecular marker development in specific environments.

Suggested Citation

  • Yang Shui & Faping Guo & Youlin Peng & Wei Yin & Pan Qi & Yungao Hu & Shengmin Yan, 2025. "Variation and QTL Analysis of Dynamic Tillering in Rice Under Nitrogen and Straw Return Treatments," Agriculture, MDPI, vol. 15(11), pages 1-22, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1115-:d:1661733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongqiang Liu & Hongru Wang & Zhimin Jiang & Wei Wang & Ruineng Xu & Qihui Wang & Zhihua Zhang & Aifu Li & Yan Liang & Shujun Ou & Xiujie Liu & Shouyun Cao & Hongning Tong & Yonghong Wang & Feng Zhou , 2021. "Genomic basis of geographical adaptation to soil nitrogen in rice," Nature, Nature, vol. 590(7847), pages 600-605, February.
    2. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangxi Zhang & Tianhong Fu & Chung-Yu Guan & Shihao Cui & Beibei Fan & Yi Tan & Wenhai Luo & Quanquan Wei & Guoxue Li & Yutao Peng, 2022. "Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    2. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Siyu Zhang & Zhe Ji & Wu Jiao & Chengbo Shen & Yaojun Qin & Yunzhi Huang & Menghan Huang & Shuming Kang & Xuan Liu & Shunqi Li & Zulong Mo & Ying Yu & Bingyu Jiang & Yanan Tian & Longfei Wang & Qingxi, 2025. "Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    6. Bingbing Huang & Hui Kong & Jinhong Yu & Xiaoyou Zhang, 2022. "A Study on the Impact of Low-Carbon Technology Application in Agriculture on the Returns of Large-Scale Farmers," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    7. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    8. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    10. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Yajun Gou & Yueqin Heng & Wenyan Ding & Canhong Xu & Qiushuang Tan & Yajing Li & Yudong Fang & Xiaoqing Li & Degui Zhou & Xinyu Zhu & Mingyue Zhang & Rongjian Ye & Haiyang Wang & Rongxin Shen, 2024. "Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Gaoming Xu & Yixuan Xie & Md. A. Matin & Ruiyin He & Qishuo Ding, 2022. "Effect of Straw Length, Stubble Height and Rotary Speed on Residue Incorporation by Rotary Tillage in Intensive Rice–Wheat Rotation System," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    13. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    14. Zhikang Wang & Ziyun Chen & Xiangxiang Fu, 2019. "Integrated Effects of Co-Inoculation with Phosphate-Solubilizing Bacteria and N 2 -Fixing Bacteria on Microbial Population and Soil Amendment Under C Deficiency," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    15. Cui, Xiaohui & Guo, Liyue & Li, Caihong & Liu, Meizhen & Wu, Guanglei & Jiang, Gaoming, 2021. "The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    17. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    18. Bin Liu & Weiya Xu & Yanxiao Niu & Qiuyuan Li & Beilu Cao & Jingyi Qi & Yidi Zhao & Yilan Zhou & Long Song & Dongkai Cui & Zhenshan Liu & Mingming Xin & Yingyin Yao & Mingshan You & Zhongfu Ni & Qixin, 2025. "TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    19. Zhao, Guanhan & Jiang, Peng & Zhang, Hao & Li, Lin & Ji, Tuo & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2024. "Mapping out the regional low-carbon and economic biomass supply chain by aligning geographic information systems and life cycle assessment models," Applied Energy, Elsevier, vol. 369(C).
    20. Yao, Dong & Xu, Zaifeng & Qi, Huaqing & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong & Cui, Peizhe, 2022. "Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass," Renewable Energy, Elsevier, vol. 186(C), pages 780-789.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1115-:d:1661733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.