IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i1p145-d1322089.html
   My bibliography  Save this article

Temperature Prediction of Mushrooms Based on a Data—Physics Hybrid Approach

Author

Listed:
  • Mingfei Wang

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Xiangshu Kong

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Feifei Shan

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Wengang Zheng

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Pengfei Ren

    (Institute of Agricultural Resources and Environment, Shangdong Academy of Agricultural Sciences, Jinan 250100, China)

  • Jiaoling Wang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affais, Nanjing 210014, China)

  • Chunling Chen

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Xin Zhang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Chunjiang Zhao

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

Abstract

Temperature has a significant impact on the production of edible mushrooms. The industrial production of edible mushrooms is committed to accurately maintaining the temperature inside the mushroom room within a certain range to achieve quality and efficiency improvement. However, current environmental regulation methods have problems such as lagging regulation and a large range of temperature fluctuations. There is an urgent need to accurately predict the temperature of mushroom houses in the future period to take measures in advance. Therefore, this article proposes a temperature prediction model for mushroom houses using a data–physical hybrid method. Firstly, the Boruta-SHAP algorithm was used to screen out the key influencing factors on the temperature of the mushroom room. Subsequently, the indoor temperature was decomposed using the optimized variational modal decomposition. Then, the gated recurrent unit neural network and attention mechanism were used to predict each modal component, and the mushroom house heat balance equation was incorporated into the model’s loss function. Finally, the predicted values of each component were accumulated to obtain the final result. The results demonstrated that integrating a simplified physical model into the predictive model based on data decomposition led to a 12.50% reduction in the RMSE of the model’s predictions compared to a purely data-driven model. The model proposed in this article exhibited good predictive performance in small datasets, reducing the time required for data collection in modeling.

Suggested Citation

  • Mingfei Wang & Xiangshu Kong & Feifei Shan & Wengang Zheng & Pengfei Ren & Jiaoling Wang & Chunling Chen & Xin Zhang & Chunjiang Zhao, 2024. "Temperature Prediction of Mushrooms Based on a Data—Physics Hybrid Approach," Agriculture, MDPI, vol. 14(1), pages 1-16, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:145-:d:1322089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    2. Shao, Junqiang & Huang, Zhiyuan & Chen, Yugui & Li, Depeng & Xu, Xiangguo, 2023. "A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption," Energy, Elsevier, vol. 269(C).
    3. Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
    4. Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    2. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    5. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    6. Liu, Hongxiang & Han, Ling & Cao, Yue, 2020. "Improving transmission efficiency and reducing energy consumption with automotive continuously variable transmission: A model prediction comprehensive optimization approach," Applied Energy, Elsevier, vol. 274(C).
    7. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    8. Yongkang Liu & Yi Gu & Yuwei Long & Qinyu Zhang & Yonggang Zhang & Xu Zhou, 2025. "Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    9. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    10. Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
    11. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
    12. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    13. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    14. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    15. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    16. Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
    17. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    18. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    19. Thiago Conte & Roberto Oliveira, 2024. "Comparative Analysis between Intelligent Machine Committees and Hybrid Deep Learning with Genetic Algorithms in Energy Sector Forecasting: A Case Study on Electricity Price and Wind Speed in the Brazi," Energies, MDPI, vol. 17(4), pages 1-31, February.
    20. Zhao, Dafang & Watari, Daichi & Ozawa, Yuki & Taniguchi, Ittetsu & Suzuki, Toshihiro & Shimoda, Yoshiyuki & Onoye, Takao, 2023. "Data-driven online energy management framework for HVAC systems: An experimental study," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:145-:d:1322089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.