IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2175-d1532494.html
   My bibliography  Save this article

Study on the Impact of the Rural Population Aging on Agricultural Total Factor Productivity in China

Author

Listed:
  • Guifang Su

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Zhe Chen

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Wei Li

    (College of Economics and Management, China Agricultural University, Beijing 100083, China)

  • Xianli Xia

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

Abstract

The rural population aging poses a great challenge to China’s agricultural production, which is dominated by small farmers. Based on the panel data of 30 provinces or cities (except Tibet) in China from 2005 to 2020, the DEA-Malmquist index is employed to measure the agricultural total factor productivity (ATFP) in each province (city), and then the mediation effect model is used to reveal the mechanism by which the rural population aging affects the ATFP through farmland transfer, agricultural social services, and agricultural machinery. The results show that the rural population aging has made a significant contribution to the ATFP, and farmland transfer, agricultural socialized services and agricultural machinery have a intermediary effect on the increase of the ATFP. Further decomposition of ATFP reveals that the rural population aging can significantly contribute to the scale efficiency and technical progress rate through farmland transfer, agricultural socialization services and agricultural machinery, but does not have a significant effect on pure technical efficiency. In order to promote the high-quality and high-efficiency development of agriculture in the context of population aging, it is necessary to optimize the market environment for farmland transfer, improve the agricultural socialized service system, and continue to strengthen agricultural science and technology innovation.

Suggested Citation

  • Guifang Su & Zhe Chen & Wei Li & Xianli Xia, 2024. "Study on the Impact of the Rural Population Aging on Agricultural Total Factor Productivity in China," Agriculture, MDPI, vol. 14(12), pages 1-18, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2175-:d:1532494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tasso Adamopoulos & Diego Restuccia, 2014. "The Size Distribution of Farms and International Productivity Differences," American Economic Review, American Economic Association, vol. 104(6), pages 1667-1697, June.
    2. Houjian Li & Xiaolei Zhou & Mengqian Tang & Lili Guo, 2022. "Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach," Agriculture, MDPI, vol. 12(5), pages 1-19, May.
    3. Rada, Nicholas E. & Fuglie, Keith O., 2019. "New perspectives on farm size and productivity," Food Policy, Elsevier, vol. 84(C), pages 147-152.
    4. Lin, Justin Yifu, 1991. "Public Research Resource Allocation in Chinese Agriculture: A Test of Induced Technological Innovation Hypotheses," Economic Development and Cultural Change, University of Chicago Press, vol. 40(1), pages 55-73, October.
    5. Qiao, Fangbin, 2017. "Increasing wage, mechanization, and agriculture production in China," China Economic Review, Elsevier, vol. 46(C), pages 249-260.
    6. Chenchen Ren & Xinyue Zhou & Chen Wang & Yaolin Guo & Yu Diao & Sisi Shen & Stefan Reis & Wanyue Li & Jianming Xu & Baojing Gu, 2023. "Ageing threatens sustainability of smallholder farming in China," Nature, Nature, vol. 616(7955), pages 96-103, April.
    7. Tan, Shuhao & Heerink, Nico & Kruseman, Gideon & Qu, Futian, 2008. "Do fragmented landholdings have higher production costs? Evidence from rice farmers in Northeastern Jiangxi province, P.R. China," China Economic Review, Elsevier, vol. 19(3), pages 347-358, September.
    8. Stephen F. Hamilton & Timothy J. Richards & Aric P. Shafran & Kathryn N. Vasilaky, 2022. "Farm labor productivity and the impact of mechanization," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1435-1459, August.
    9. Tingting Li & Hongwei Lu & Qiyou Luo & Guojing Li & Mingjie Gao, 2024. "The Impact of Rural Population Aging on Agricultural Cropping Structure: Evidence from China’s Provinces," Agriculture, MDPI, vol. 14(4), pages 1-19, April.
    10. Fang, Dan & Chen, Jiangqiang & Wang, Saige & Chen, Bin, 2024. "Can agricultural mechanization enhance the climate resilience of food production? Evidence from China," Applied Energy, Elsevier, vol. 373(C).
    11. Ruisheng Li & Jiaoyan Chen & Dingde Xu, 2024. "The Impact of Agricultural Socialized Service on Grain Production: Evidence from Rural China," Agriculture, MDPI, vol. 14(5), pages 1-19, May.
    12. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Tang & Zhiyou Liu & Feng Huang, 2025. "Digital Literacy, Labor Force Characteristics and the Degree of Adoption of Agricultural Socialized Services: Empirical Evidence from Rural China," Agriculture, MDPI, vol. 15(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marijn Bolhuis & Swapnika Rachapalli & Diego Restuccia, 2021. "Misallocation in Indian Agriculture," Working Papers tecipa-709, University of Toronto, Department of Economics.
    2. Tasso Adamopoulos & Loren Brandt & Jessica Leight & Diego Restuccia, 2022. "Misallocation, Selection, and Productivity: A Quantitative Analysis With Panel Data From China," Econometrica, Econometric Society, vol. 90(3), pages 1261-1282, May.
    3. Yin, Yanshu & Zhang, Yingnan & Wang, Shu & Xu, Ke & Zhang, Yang & Dogot, Thomas & Yin, Changbin, 2024. "Integrating production, ecology and livelihood confers an efficiency-driven farming system based on the sustainable farmland framework," Agricultural Systems, Elsevier, vol. 220(C).
    4. Hui Zhang & Jing Li & Tianshu Quan, 2023. "Strengthening or Weakening: The Impact of an Aging Rural Workforce on Agricultural Economic Resilience in China," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    5. Xu, Zhan & Liang, Zhengyuan & Cheng, Jiali & Groot, Jeroen C.J. & Zhang, Chaochun & Cong, Wen-Feng & Zhang, Fusuo & van der Werf, Wopke, 2024. "Comparing the sustainability of smallholder and business farms in the North China Plain; a case study in Quzhou," Agricultural Systems, Elsevier, vol. 216(C).
    6. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    7. Ayerst, Stephen & Brandt, Loren & Restuccia, Diego, 2020. "Market constraints, misallocation, and productivity in Vietnam agriculture," Food Policy, Elsevier, vol. 94(C).
    8. Cao, Huoqing & Chen, Shiyi & Xi, Xican, 2023. "Aging, migration, and structural transformation in China," Economic Modelling, Elsevier, vol. 126(C).
    9. Deng, Haiyan & Jin, Yanhong & Pray, Carl & Hu, Ruifa & Xia, Enjun & Meng, Hong, 2021. "Impact of public research and development and extension on agricultural productivity in China from 1990 to 2013," China Economic Review, Elsevier, vol. 70(C).
    10. Meng, Meng & Zhang, Wuke & Zhu, Xi & Shi, Qinghua, 2024. "Agricultural mechanization and rural worker mobility: Evidence from the Agricultural Machinery Purchase Subsidies programme in China," Economic Modelling, Elsevier, vol. 139(C).
    11. Wenjin Wu & Qianlei Yu & Yaping Chen & Jun Guan & Yule Gu & Anqi Guo & Hao Wang, 2024. "Land Management Scale and Net Carbon Effect of Farming in China: Spatial Spillover Effects and Threshold Characteristics," Sustainability, MDPI, vol. 16(15), pages 1-22, July.
    12. Juanjuan Cheng & Qian Wang & Huanmin Zhang & Toyohiko Matsubara & Naoki Yoshikawa & Jin Yu, 2022. "Does Farm Size Expansion Improve the Agricultural Environment? Evidence from Apple Farmers in China," Agriculture, MDPI, vol. 12(11), pages 1-23, October.
    13. Jiani Wang & Yan Li & Sheng Liu & Hang Xu & Ziling Zhu & Jia Ding & Pu Liu & Yuyu Yang & Qing Zhu & Lei Liu, 2025. "Global average socio-economic farm size may triple by 2100," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    14. Baomin Cui & Lingling Tang & Jianxu Liu & Songsak Sriboonchitta, 2023. "How Does Land Transfer Impact the Household Labor Productivity in China? Empirical Evidence from Survey Data in Shandong," Land, MDPI, vol. 12(4), pages 1-24, April.
    15. Aremu, Olayinka & Fabry, Anna & Meemken, Eva-Marie, 2024. "Farm size and the quality and quantity of jobs—Insights from Nigeria," Food Policy, Elsevier, vol. 128(C).
    16. Yuanying Chi & Wenbing Zhou & Zhenyu Wang & Yu Hu & Xiao Han, 2021. "The Influence Paths of Agricultural Mechanization on Green Agricultural Development," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    17. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    18. Keijiro Otsuka, 2021. "Changing Relationship between Farm Size and Productivity and Its Implications for Philippine Agriculture," Discussion Papers 2102, Graduate School of Economics, Kobe University.
    19. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    20. Wu, Qi & Liu, Shuyun & Fan, Shenggen, 2024. "Aging Labor Force, Climate Change and the Path to Green Total Factor Productivity in Chinese Agriculture," 2024 Annual Meeting, July 28-30, New Orleans, LA 343729, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2175-:d:1532494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.