IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p1049-d1145918.html
   My bibliography  Save this article

Irrigation Alternatives for Avocado ( Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review

Author

Listed:
  • Belén Cárceles Rodríguez

    (IFAPA Centro “Camino de Purchil”, Camino de Purchil s/n, 18004 Granada, Spain)

  • Víctor Hugo Durán Zuazo

    (IFAPA Centro “Camino de Purchil”, Camino de Purchil s/n, 18004 Granada, Spain)

  • Dionisio Franco Tarifa

    (Ayuntamiento de Almuñécar, Plaza de la Constitución 1, 18690 Almuñécar, Spain)

  • Simón Cuadros Tavira

    (Department Ingeniería Forestal, Universidad de Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396, 14071 Córdoba, Spain)

  • Pedro Cermeño Sacristan

    (IFAPA Centro “Las Torres”, Carretera Sevilla-Cazalla Km 122, 41200 Alcalá del Río, Spain)

  • Iván Francisco García-Tejero

    (IFAPA Centro “Las Torres”, Carretera Sevilla-Cazalla Km 122, 41200 Alcalá del Río, Spain)

Abstract

Due to congenital features, avocado ( Persea americana Mill.) trees are substantial water users relative to other fruit trees. The current growing deficiency of water resources, especially in arid and semi-arid avocado-producing areas, has led to the demand for more sustainable water-saving measures. The objective of this review was to analyze the role of deficit irrigation as a strategy to face climate change and water scarcity through achieving efficiency, saving water, and maximizing the benefits that could be achieved at the level of the irrigated agricultural system. Particular attention is devoted to studies performed in the subtropical Mediterranean climate, in which irrigated avocado orchards are common. These studies analyzed irrigation demand, deficit irrigation, and determination of water status through physiological parameters, leading to possible sustainable irrigation programs for avocado in the context of water shortage scenarios. Through these insights, we conclude that under the current climatic circumstances with respect to available water resources, avocado farming requires sustainable resilience strategies to reduce irrigation water consumption without affecting the yield and quality of the fruits. Water stress inevitably affects the physiological processes that determine yield. Therefore, an admissible yield loss is required with smaller fruits and water savings made through deficit irrigation strategies. In addition, modern consumers tend to prefer foods based on sustainability, i.e., there is a high demand for socially responsible and environmentally friendly products.

Suggested Citation

  • Belén Cárceles Rodríguez & Víctor Hugo Durán Zuazo & Dionisio Franco Tarifa & Simón Cuadros Tavira & Pedro Cermeño Sacristan & Iván Francisco García-Tejero, 2023. "Irrigation Alternatives for Avocado ( Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1049-:d:1145918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/1049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/1049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    2. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Michelakis, N. & Vougioucalou, E. & Clapaki, G., 1993. "Water use, wetted soil volume, root distribution and yield of avocado under drip irrigation," Agricultural Water Management, Elsevier, vol. 24(2), pages 119-131, October.
    4. Alfonso Expósito & Julio Berbel, 2017. "Sustainability Implications of Deficit Irrigation in a Mature Water Economy: A Case Study in Southern Spain," Sustainability, MDPI, vol. 9(7), pages 1-13, June.
    5. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Ballester, C. & Buesa, I. & Bonet, L. & Intrigliolo, D.S., 2014. "Usefulness of stem dendrometers as continuous indicator of loquat trees water status," Agricultural Water Management, Elsevier, vol. 142(C), pages 110-114.
    7. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Tarchitzky, Jorge & Rog, Ido & Klein, Tamir & Cohen, Shabtai, 2021. "Mitigating negative effects of long-term treated wastewater irrigation: Leaf gas exchange and water use efficiency response of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Moreno-Ortega, G. & Pliego, C. & Sarmiento, D. & Barceló, A. & Martínez-Ferri, E., 2019. "Yield and fruit quality of avocado trees under different regimes of water supply in the subtropical coast of Spain," Agricultural Water Management, Elsevier, vol. 221(C), pages 192-201.
    9. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Silber, Avner & Israeli, Yair & Levi, Menashe & Keinan, Ami & Chudi, George & Golan, Avner & Noy, Michael & Levkovitch, Irit & Narkis, Kfir & Naor, Amos & Assouline, Shmuel, 2013. "The roles of fruit sink in the regulation of gas exchange and water uptake: A case study for avocado," Agricultural Water Management, Elsevier, vol. 116(C), pages 21-28.
    11. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    12. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Salgado, E. & Cauti­n, R., 2008. "Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 817-824, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiresia-Teresa Tzatzani & Giasemi Morianou & Safiye Tül & Nektarios N. Kourgialas, 2023. "Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece," Agriculture, MDPI, vol. 13(7), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Silber, A. & Israeli, Y. & Levi, M. & Keinan, A. & Shapira, O. & Chudi, G. & Golan, A. & Noy, M. & Levkovitch, I. & Assouline, S., 2012. "Response of ‘Hass’ avocado trees to irrigation management and root constraint," Agricultural Water Management, Elsevier, vol. 104(C), pages 95-103.
    5. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Tarchitzky, Jorge & Rog, Ido & Klein, Tamir & Cohen, Shabtai, 2021. "Mitigating negative effects of long-term treated wastewater irrigation: Leaf gas exchange and water use efficiency response of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Andreu, L. & Hopmans, J. W. & Schwankl, L. J., 1997. "Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 123-146, December.
    7. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    8. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Ganot, Yonatan & Dahlke, Helen E., 2021. "A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Alexandre Troian & Mário Conill Gomes & Tales Tiecher & Julio Berbel & Carlos Gutiérrez-Martín, 2021. "The Drivers-Pressures-State-Impact-Response Model to Structure Cause−Effect Relationships between Agriculture and Aquatic Ecosystems," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    12. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    13. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    14. Pritee Sharma & Salla Nithyanth Kumar, 2020. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 377-391, June.
    15. Nemera, Diriba B. & Dovjik, Ilya & Florentin, Assa & Shahak, Yosepha & Charuvi, Dana & Cohen, Shabtai & Sadka, Avi, 2023. "Sparse-shading red net improves water relations in Valencia orange trees," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Thiresia-Teresa Tzatzani & Giasemi Morianou & Safiye Tül & Nektarios N. Kourgialas, 2023. "Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece," Agriculture, MDPI, vol. 13(7), pages 1-10, July.
    17. Livellara, N. & Saavedra, F. & Salgado, E., 2011. "Plant based indicators for irrigation scheduling in young cherry trees," Agricultural Water Management, Elsevier, vol. 98(4), pages 684-690, February.
    18. Qin, Wenli & Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei, 2018. "Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 330-339.
    19. Beeson Jr., R.C., 2011. "Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates," Agricultural Water Management, Elsevier, vol. 98(6), pages 967-976, April.
    20. Pritee Sharma & Salla Nithyanth Kumar, 0. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1049-:d:1145918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.