IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1091-d870816.html
   My bibliography  Save this article

Simulating Spring Barley Yield under Moderate Input Management System in Poland

Author

Listed:
  • Elzbieta Czembor

    (Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland)

  • Zygmunt Kaczmarek

    (Institute of Plant Genetics, Polish Academy of Sciences, 60-637 Poznan, Poland)

  • Wiesław Pilarczyk

    (Department of Mathematical and Statistical Methods, University of Life Sciences, 60-637 Poznan, Poland)

  • Dariusz Mańkowski

    (Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland)

  • Jerzy H. Czembor

    (Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland)

Abstract

In recent years, forecasting has become particularly important as all areas of economic life are subject to very dynamic changes. In the case of agriculture, forecasting is an essential element of effective and efficient farm management. Factors affecting crop yields, such as soil, weather, and farm management, are complex and investigations into the relation between these variables are crucial for agricultural studies and decision-making related to crop monitoring, with special emphasis for climate change. Because of this, the aim of this study was to create a spring barley yield prediction model, as a part of the Advisory Support platform in the form of application for Polish agriculture under a moderate input management system. As a representative sample, 20 barley varieties, evaluated under 13 environments representative for Polish conditions, were used. To create yield potential model data for the genotype (G), environment (E), and management (M) were collected over 3 years. The model developed using Multiple Linear Regression (MLR) simulated barley yields with high goodness of fit to the measured data across three years of evaluation. On average, the precision of the cultivar yielding forecast (expressed as a percentage), based on the independent traits, was 78.60% (Model F-statistic: 102.55***) and the range, depending of the variety, was 89.10% (Model F-statistic: 19.26***)–74.60% (Model F-statistic: 6.88***). The model developed using Multiple Linear Regression (MLR) simulated barley yields with high goodness of fit to the measured data across three years of evaluation. It was possible to observe a large differentiation for the response to agroclimatic or soil factors. Under Polish conditions, ten traits have a similar effect (in the prediction model, they have the same sign: + or -) on the yield of almost all varieties (from 17 to 20). Traits that negatively affected final yield were: lodging tendency for 18 varieties (18-), sum of rainfall in January for 19 varieties (19-), and April for 17 varieties (17-). However, the sum of rainfall in February positively affected the final yield for 20 varieties (20+). Average monthly ground temperature in March positively affected final yield for 17 varieties (17+). The average air temperature in March negatively affected final yield for 18 varieties (18-) and for 17 varieties in June (17-). In total, the level of N + P + K fertilization negatively affected the final yield for 15 varieties (15-), but N sum fertilization significantly positively affected final yield for 15 varieties (15+). Soil complex positively influenced the final yield of this crop. In the group of diseases, resistance to powdery mildew and rhynchosporium significantly decreased the final yield. For Polish conditions, it is a complex model for prediction of variety in the yield, including its genetic potential.

Suggested Citation

  • Elzbieta Czembor & Zygmunt Kaczmarek & Wiesław Pilarczyk & Dariusz Mańkowski & Jerzy H. Czembor, 2022. "Simulating Spring Barley Yield under Moderate Input Management System in Poland," Agriculture, MDPI, vol. 12(8), pages 1-20, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1091-:d:870816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aftab Wajid & Khalid Hussain & Ayesha Ilyas & Muhammad Habib-ur-Rahman & Qamar Shakil & Gerrit Hoogenboom, 2021. "Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    2. Kelvin López-Aguilar & Adalberto Benavides-Mendoza & Susana González-Morales & Antonio Juárez-Maldonado & Pamela Chiñas-Sánchez & Alvaro Morelos-Moreno, 2020. "Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    3. Elżbieta Wójcik-Gront & Marcin Studnicki, 2021. "Long-Term Yield Variability of Triticale (× Triticosecale Wittmack) Tested Using a CART Model," Agriculture, MDPI, vol. 11(2), pages 1-12, January.
    4. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    5. Daniel P. Bebber & Mark A. T. Ramotowski & Sarah J. Gurr, 2013. "Crop pests and pathogens move polewards in a warming world," Nature Climate Change, Nature, vol. 3(11), pages 985-988, November.
    6. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    2. Jolanta Wawrzyniak, 2020. "Application of Artificial Neural Networks to Assess the Mycological State of Bulk Stored Rapeseeds," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
    3. Grazia Trebbi & Lorenzo Negri & Sara Bosi & Giovanni Dinelli & Riccardo Cozzo & Ilaria Marotti, 2020. "Evaluation of Equisetum arvense (Horsetail Macerate) as a Copper Substitute for Pathogen Management in Field-Grown Organic Tomato and Durum Wheat Cultivations," Agriculture, MDPI, vol. 11(1), pages 1-14, December.
    4. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Levi, Sebastian, 2021. "Living standards shape individual attitudes on genetically modified food around the world," SocArXiv kqdje, Center for Open Science.
    6. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    7. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    8. Irina Pilvere & Aleksejs Nipers & Agnese Krievina & Ilze Upite & Daniels Kotovs, 2022. "LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers," Agriculture, MDPI, vol. 12(5), pages 1-26, May.
    9. Cliff Zinyemba & Emma Archer & Hanna-Andrea Rother, 2020. "Climate Change, Pesticides and Health: Considering the Risks and Opportunities of Adaptation for Zimbabwean Smallholder Cotton Growers," IJERPH, MDPI, vol. 18(1), pages 1-11, December.
    10. Vieira Junior, Nilson & Carcedo, Ana Julia Paula & Min, Doohong & Diatta, Andre Amakobo & Araya, Alemie & Prasad, P.V. Vara & Diallo, Amadiane & Ciampitti, Ignacio, 2023. "Management adaptations for water-limited pearl millet systems in Senegal," Agricultural Water Management, Elsevier, vol. 278(C).
    11. Kazuya Maeda & Dong-Hyuk Ahn, 2021. "Estimation of Dry Matter Production and Yield Prediction in Greenhouse Cucumber without Destructive Measurements," Agriculture, MDPI, vol. 11(12), pages 1-10, November.
    12. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    13. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    14. J. Junk & L. Kouadio & P. Delfosse & M. Jarroudi, 2016. "Effects of regional climate change on brown rust disease in winter wheat," Climatic Change, Springer, vol. 135(3), pages 439-451, April.
    15. Robert G. Chambers & Yu Sheng, "undated". "Genetically Modified Organisms and Agricultural Productivity," Working Papers 3, International Society for Efficiency and Productivity Analysis.
    16. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Karolina Ratajczak & Hanna Sulewska & Katarzyna Panasiewicz & Agnieszka Faligowska & Grażyna Szymańska, 2023. "Phytostimulator Application after Cold Stress for Better Maize ( Zea mays L.) Plant Recovery," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    18. Tim G. Benton, 2020. "COVID-19 and disruptions to food systems," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(3), pages 577-578, September.
    19. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    20. Alice Feurtey & Cécile Lorrain & Megan C. McDonald & Andrew Milgate & Peter S. Solomon & Rachael Warren & Guido Puccetti & Gabriel Scalliet & Stefano F. F. Torriani & Lilian Gout & Thierry C. Marcel &, 2023. "A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1091-:d:870816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.