IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60761-x.html
   My bibliography  Save this article

Enhancing biolistic plant transformation and genome editing with a flow guiding barrel

Author

Listed:
  • Connor Thorpe

    (Iowa State University)

  • Weifeng Luo

    (University of Maryland)

  • Qing Ji

    (Iowa State University)

  • Alan L. Eggenberger

    (Iowa State University)

  • Aline S. Chicowski

    (Iowa State University)

  • Weihui Xu

    (Iowa State University)

  • Ritinder Sandhu

    (Iowa State University)

  • Keunsub Lee

    (Iowa State University
    Iowa State University)

  • Steven A. Whitham

    (Iowa State University
    Iowa State University)

  • Yiping Qi

    (University of Maryland
    University of Maryland)

  • Kan Wang

    (Iowa State University
    Iowa State University)

  • Shan Jiang

    (Iowa State University
    Iowa State University
    Iowa State University)

Abstract

The biolistic delivery system is an essential tool in plant genetic engineering, capable of delivering DNAs, RNAs, and proteins independent of tissue type, genotype, or species. However, its efficiency and consistency remain longstanding challenges despite decades of widespread use. Here, through advanced simulations, we identify gas and particle flow barriers as the root cause of these limitations. We show that a flow guiding barrel (FGB) achieves a 22-fold enhancement in transient transfection efficiency, a 4.5-fold increase in CRISPR-Cas9 ribonucleoprotein editing efficiency in onion epidermis, and a 17-fold improvement in viral infection efficiency in maize seedlings. Furthermore, stable transformation frequency in maize using B104 immature embryos increases over 10-fold, while in planta CRISPR-Cas12a-mediated genome editing efficiency in wheat meristems doubles in both T0 and T1 generations. This study provides insights into the fundamental mechanisms underlying biolistic inefficiency and demonstrates a practical solution that enables broader and more reliable applications in plant genetic engineering.

Suggested Citation

  • Connor Thorpe & Weifeng Luo & Qing Ji & Alan L. Eggenberger & Aline S. Chicowski & Weihui Xu & Ritinder Sandhu & Keunsub Lee & Steven A. Whitham & Yiping Qi & Kan Wang & Shan Jiang, 2025. "Enhancing biolistic plant transformation and genome editing with a flow guiding barrel," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60761-x
    DOI: 10.1038/s41467-025-60761-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60761-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60761-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sergei Svitashev & Christine Schwartz & Brian Lenderts & Joshua K. Young & A. Mark Cigan, 2016. "Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    2. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    3. Yi Zhang & Zhen Liang & Yuan Zong & Yanpeng Wang & Jinxing Liu & Kunling Chen & Jin-Long Qiu & Caixia Gao, 2016. "Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    4. Vidhyavathi Raman & Clemencia M. Rojas & Balaji Vasudevan & Kevin Dunning & Jaydeep Kolape & Sunhee Oh & Jianfei Yun & Lishan Yang & Guangming Li & Bikram D. Pant & Qingzhen Jiang & Kirankumar S. Myso, 2022. "Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Hang Su & Yuanchun Wang & Jin Xu & Ahmad A. Omar & Jude W. Grosser & Milica Calovic & Liyang Zhang & Yu Feng & Christopher A. Vakulskas & Nian Wang, 2023. "Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    6. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    7. Bindu Paudel & Deepthi E. Kolady & David Just & Evert Van der Sluis, 2023. "Determinants of consumer acceptance of gene‐edited foods and its implications for innovators and policymakers," Agribusiness, John Wiley & Sons, Ltd., vol. 39(3), pages 623-645, July.
    8. Yaxuan Pan & Yijie Guan & Shan Lv & Xiaoyu Huang & Yijun Lin & Chaoyang Wei & Danping Xu, 2025. "Assessing the Potential Distribution of Lonicera japonica in China Under Climate Change: A Biomod2 Ensemble Model-Based Study," Agriculture, MDPI, vol. 15(4), pages 1-16, February.
    9. Ali, Shahzad & Li, Zongzhen & Zhang, Xia & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "How do novel plant growth regulators and cultivation models strategies affect mechanical strength, lodging resistance and maize productivity in semi-arid regions?," Agricultural Water Management, Elsevier, vol. 295(C).
    10. Xue, Qimin & Li, Hao & Du, Taisheng, 2025. "Mild water deficit during maturity reduces cracking rate of greenhouse muskmelon while improving fruit quality," Agricultural Water Management, Elsevier, vol. 313(C).
    11. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    12. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    13. Robert G. Chambers & Yu Sheng, "undated". "Genetically Modified Organisms and Agricultural Productivity," Working Papers 3, International Society for Efficiency and Productivity Analysis.
    14. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    16. Jakob Hoffmann & Johannes Glückler, 2023. "Technological Cohesion and Convergence: A Main Path Analysis of the Bioeconomy, 1900–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    17. Jerzy H. Czembor & Elzbieta Czembor & Marcin Krystek & Juliusz Pukacki, 2023. "AgroGenome: Interactive Genomic-Based Web Server Developed Based on Data Collected for Accessions Stored in Polish Genebank," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    18. Gabriela Briceño & Maria Cristina Diez & Graciela Palma & Milko Jorquera & Heidi Schalchli & Juliana María Saez & Claudia Susana Benimeli, 2024. "Neonicotinoid Effects on Soil Microorganisms: Responses and Mitigation Strategies," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    19. Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Yigezu A. Yigezu & Zewdie Bishaw & Abdoul Aziz Niane & Jeffrey Alwang & Tamer El-Shater & Mohamed Boughlala & Aden Aw-Hassan & Wuletaw Tadesse & Filippo M. Bassi & Ahmed Amri & Michael Baum, 2021. "Institutional and farm-level challenges limiting the diffusion of new varieties from public and CGIAR centers: The case of wheat in Morocco," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1359-1377, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60761-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.