IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1804-d957492.html
   My bibliography  Save this article

Consensual Regression of Lasso-Sparse PLS models for Near-Infrared Spectra of Food

Author

Listed:
  • Lei-Ming Yuan

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Xiaofeng Yang

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Xueping Fu

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Jiao Yang

    (Xuetian Salt Industry Group Co., Ltd., Changsha 410004, China)

  • Xi Chen

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Guangzao Huang

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Xiaojing Chen

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Limin Li

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Wen Shi

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

Abstract

In some cases, near-infrared spectra (NIRS) make the prediction of quantitative models unreliable, and the choice of a suitable number of latent variables (LVs) for partial least square (PLS) is difficult. In this case, a strategy of fusing member models with important information is gradually becoming valued in recent research. In this work, a series of PLS regression models were developed with an increasing number of LVs as member models. Then, the least absolute shrinkage and selection operator (Lasso) was employed as the model’s selection access to sparse uninformative ones among these PLS member models. Deviation weighted fusion (DW-F), partial least squares regression coefficient fusion (PLS-F), and ridge regression coefficient fusion (RR-F) were comparatively used further to fuse the above sparsed member models, respectively. Three spectral datasets, including six attributes in NIR data of corn, apple, and marzipan, respectively, were applied in order to validate the feasibility of this fusion algorithm. Six fusion models of the above attributes performed better than the general optimal PLS model, with a noticeable enhancement of root mean errors squared of prediction (RMSEP) arriving at its highest at 80%. It also reduced more than half of the spectral bands; the DW-F especially showed its excellent fusing capacity and obtained the best performance. Results show that the preferred strategy of DW-F model combined with Lasso selection can make full use of spectral information, and significantly improve the prediction accuracy of fusion models.

Suggested Citation

  • Lei-Ming Yuan & Xiaofeng Yang & Xueping Fu & Jiao Yang & Xi Chen & Guangzao Huang & Xiaojing Chen & Limin Li & Wen Shi, 2022. "Consensual Regression of Lasso-Sparse PLS models for Near-Infrared Spectra of Food," Agriculture, MDPI, vol. 12(11), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1804-:d:957492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    10. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    11. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    12. Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
    13. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    14. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    16. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    17. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    18. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    19. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    20. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1804-:d:957492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.