IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1770-d952840.html
   My bibliography  Save this article

Study on the Hydraulic and Energy Loss Characteristics of the Agricultural Pumping Station Caused by Hydraulic Structures

Author

Listed:
  • Weixuan Jiao

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 214000, China)

  • Zhishuang Li

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 214000, China)

  • Li Cheng

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 214000, China)

  • Yuqi Wang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 214000, China)

  • Bowen Zhang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 214000, China)

Abstract

The pumping station is an important part of the agricultural irrigation and drainage system. The sump is one of the common water inlet types of agricultural pumping stations. In the sump, to facilitate the installation and maintenance of equipment, some hydraulic structures, such as pump beams, maintenance platforms and chest walls, are added to the sump. At present, the impact of hydraulic structures in the sump on the hydraulic performance of the pump device is not clear, so this paper focused on the impact of hydraulic structures on the hydraulic characteristics and entropy generation characteristics of the pump device by using numerical simulation methods. The results showed that the installation of hydraulic structures in the sump has the greatest impact on the efficiency of the pump device. The efficiency coefficient increased after adding a pump beam in the sump and decreased by about 2% after adding a maintenance platform and a water retaining chest wall. Results also showed that the installation of hydraulic structures in the sump will lead to uneven distribution of entropy generation in the sump, especially in the vicinity of the hydraulic structures. The installation of the maintenance platform and chest wall will lead to the increase of the total entropy generation in the sump, which also means that the hydraulic loss in the sump will increase accordingly. Hence, in addition to the pump beam, other structures should be avoided in the sump.

Suggested Citation

  • Weixuan Jiao & Zhishuang Li & Li Cheng & Yuqi Wang & Bowen Zhang, 2022. "Study on the Hydraulic and Energy Loss Characteristics of the Agricultural Pumping Station Caused by Hydraulic Structures," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1770-:d:952840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    2. Qingfeng Ji & Guoying Wu & Weili Liao & Honggang Fan, 2022. "Flow Deflection between Guide Vanes in a Pump Turbine Operating in Pump Mode with a Slight Opening," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyin Zhang & Jianlong Liu & Jinxin Wu & Weixuan Jiao & Li Cheng & Mingbin Yuan, 2023. "Research on Optimization of the Bulb Form of the Bulb Tubular Pump Device for a Low-Head Agricultural Irrigation Pumping Station," Agriculture, MDPI, vol. 13(9), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    2. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    3. Yangyang Wei & Yuhui Shi & Weidong Shi & Bo Pan, 2022. "Numerical Analysis and Experimental Study of Unsteady Flow Characteristics in an Ultra-Low Specific Speed Centrifugal Pump," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    4. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    5. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    6. Tang, Qinghong & Yu, An & Wang, Yongshuai & Tang, Yibo & Wang, Yifu, 2023. "Numerical analysis of vorticity transport and energy dissipation of inner-blade vortex in Francis turbine," Renewable Energy, Elsevier, vol. 203(C), pages 634-648.
    7. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    8. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    9. Wu, TianXin & Wu, DengHao & Gao, ShuYu & Song, Yu & Ren, Yun & Mou, JieGang, 2023. "Multi-objective optimization and loss analysis of multistage centrifugal pumps," Energy, Elsevier, vol. 284(C).
    10. Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
    11. John Cimbala & Bryan Lewis, 2022. "Advancements in Hydropower Design and Operation for Present and Future Electrical Demand," Energies, MDPI, vol. 15(7), pages 1-2, March.
    12. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    13. Lihui, Xu & Tao, Guo & Wenquan, Wang, 2022. "Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method," Renewable Energy, Elsevier, vol. 198(C), pages 367-379.
    14. Ohiemi, Israel Enema & Sunsheng, Yang & Singh, Punit & Li, Yanjun & Osman, Fareed, 2023. "Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method," Energy, Elsevier, vol. 274(C).
    15. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    16. Hang, Jianwei & Bai, Ling & Zhou, Ling & Jiang, Lei & Shi, Weidong & Agarwal, Ramesh, 2022. "Inter-stage energy characteristics of electrical submersible pump under gassy conditions," Energy, Elsevier, vol. 256(C).
    17. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    18. Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
    19. Danyang Du & Yong Han & Yu Xiao & Lu Yang & Xuanwei Shi, 2022. "The Effects of Meridian Surface Shape on the Pressure Pulsation of a Multi-Stage Electric Submersible Pump," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    20. Natalya Kizilova & Akash Shankar & Signe Kjelstrup, 2024. "A Minimum Entropy Production Approach to Optimization of Tubular Chemical Reactors with Nature-Inspired Design," Energies, MDPI, vol. 17(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1770-:d:952840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.