IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i1p35-d475878.html
   My bibliography  Save this article

Simulating Beef Cattle Herd Productivity with Varying Cow Liveweight and Fixed Feed Supply

Author

Listed:
  • Lydia J. Farrell

    (Teagasc Animal & Grassland Research and Innovation Centre, Mellows Campus, Athenry, H65 R718 Co. Galway, Ireland)

  • Stephen T. Morris

    (School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand)

  • Paul R. Kenyon

    (School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand)

  • Peter R. Tozer

    (School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand)

Abstract

The liveweight of New Zealand beef cows has increased in recent decades due to selection for higher growth rates. Published data suggest that the efficiency of beef cow production decreases with increasing cow liveweight. Changes in beef herd size, feed demand, production, and cash operating surplus (COS) were simulated with average mature cow liveweight varied to 450, 500, 550, and 600 kg. With total annual beef feed demand fixed at the same level, in all scenarios cow numbers and numbers of weaned calves decreased with increasing cow liveweight. When the model was run with consistent efficiency of calf production across the mature cow liveweights (scenario A), heavier cows were more profitable. However, using published efficiency data (scenarios B and C), herds of heavier cows were less profitable. The likely most realistic scenario for New Zealand hill country farms (scenario B) had COS decrease from New Zealand Dollars (NZD) 456/ha with a herd of 450 kg cows to NZD 424/ha with 600 kg cows. Reductions in COS were relatively small, which may not deter farmers from breeding heavier cows for higher calf growth rates. However, the results of this analysis combined with indirect potential economic impacts suggest that the heaviest cows may not be optimal for New Zealand hill country conditions.

Suggested Citation

  • Lydia J. Farrell & Stephen T. Morris & Paul R. Kenyon & Peter R. Tozer, 2021. "Simulating Beef Cattle Herd Productivity with Varying Cow Liveweight and Fixed Feed Supply," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:35-:d:475878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/1/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/1/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. White, T.A. & Snow, V.O. & King, W.McG., 2010. "Intensification of New Zealand beef farming systems," Agricultural Systems, Elsevier, vol. 103(1), pages 21-35, January.
    2. Lydia J. Farrell & Paul R. Kenyon & Stephen T. Morris & Peter R. Tozer, 2020. "The Impact of Hogget and Mature Flock Reproductive Success on Sheep Farm Productivity," Agriculture, MDPI, vol. 10(11), pages 1-15, November.
    3. Farrell, L.J. & Tozer, P.R. & Kenyon, P.R. & Ramilan, T. & Cranston, L.M., 2019. "The effect of ewe wastage in New Zealand sheep and beef farms on flock productivity and farm profitability," Agricultural Systems, Elsevier, vol. 174(C), pages 125-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Chege Wangui & Paul R. Kenyon & Peter R. Tozer & James P. Millner & Sarah J. Pain, 2021. "Bioeconomic Modelling to Assess the Impacts of Using Native Shrubs on the Marginal Portions of the Sheep and Beef Hill Country Farms in New Zealand," Agriculture, MDPI, vol. 11(10), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Chege Wangui & Paul R. Kenyon & Peter R. Tozer & James P. Millner & Sarah J. Pain, 2021. "Bioeconomic Modelling to Assess the Impacts of Using Native Shrubs on the Marginal Portions of the Sheep and Beef Hill Country Farms in New Zealand," Agriculture, MDPI, vol. 11(10), pages 1-21, October.
    2. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Model Development and Evaluation," Agriculture, MDPI, vol. 11(6), pages 1-16, June.
    3. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    4. Celal Cevher & Bulent Altunkaynak & Meltem Gürü, 2021. "Impacts of COVID-19 on Agricultural Production Branches: An Investigation of Anxiety Disorders among Farmers," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    5. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    6. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Young Beef Cattle Production in New Zealand," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    7. Alemu, Aklilu W. & Amiro, Brian D. & Bittman, Shabtai & MacDonald, Douglas & Ominski, Kim H., 2017. "Greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms," Agricultural Systems, Elsevier, vol. 151(C), pages 73-83.
    8. Olubode-Awosola, Femi, 2011. "Integrated Assessment Modelling of Complexity in the New Zealand Farming Industry," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115404, New Zealand Agricultural and Resource Economics Society.
    9. Lieffering, Mark & Newton, Paul C.D. & Vibart, Ronaldo & Li, Frank Y., 2016. "Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models," Agricultural Systems, Elsevier, vol. 144(C), pages 77-86.
    10. Z. Whitman & T. Wilson & E. Seville & J. Vargo & J. Stevenson & H. Kachali & J. Cole, 2013. "Rural organizational impacts, mitigation strategies, and resilience to the 2010 Darfield earthquake, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1849-1875, December.
    11. Guoping Xiong & Xin Cao & Nicholas A. S. Hamm & Tao Lin & Guoqin Zhang & Binghong Chen, 2021. "Unbalanced Development Characteristics and Driving Mechanisms of Regional Urban Spatial Form: A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 13(6), pages 1-39, March.
    12. Farrell, L.J. & Kenyon, P.R. & Tozer, P.R. & Ramilan, T. & Cranston, L.M., 2020. "Quantifying sheep enterprise profitability with varying flock replacement rates, lambing rates, and breeding strategies in New Zealand," Agricultural Systems, Elsevier, vol. 184(C).
    13. Samsonstuen, Stine & Åby, Bente A. & Crosson, Paul & Beauchemin, Karen A. & Bonesmo, Helge & Aass, Laila, 2019. "Farm scale modelling of greenhouse gas emissions from semi-intensive suckler cow beef production," Agricultural Systems, Elsevier, vol. 176(C).
    14. Ash, Andrew & Hunt, Leigh & McDonald, Cam & Scanlan, Joe & Bell, Lindsay & Cowley, Robyn & Watson, Ian & McIvor, John & MacLeod, Neil, 2015. "Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis," Agricultural Systems, Elsevier, vol. 139(C), pages 50-65.
    15. Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
    16. Vogeler, Iris & Vibart, Ronaldo & Cichota, Rogerio, 2017. "Potential benefits of diverse pasture swards for sheep and beef farming," Agricultural Systems, Elsevier, vol. 154(C), pages 78-89.
    17. John Rendel & Alec Mackay & Paul Smale & Andrew Manderson & David Scobie, 2020. "Optimisation of the Resource of Land-Based Livestock Systems to Advance Sustainable Agriculture: A Farm-Level Analysis," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
    18. Januarius Gobilik & Stephen Todd Morris & Cory Matthew, 2021. "Evolution in Configuration and Productivity of New Zealand Hill Country Sheep and Beef Cattle Systems," Agriculture, MDPI, vol. 11(6), pages 1-19, June.
    19. Lydia J. Farrell & Paul R. Kenyon & Stephen T. Morris & Peter R. Tozer, 2020. "The Impact of Hogget and Mature Flock Reproductive Success on Sheep Farm Productivity," Agriculture, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:35-:d:475878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.