IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p1015-d658374.html
   My bibliography  Save this article

The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo ( Bubalus bubalis )

Author

Listed:
  • Huimin Zhong

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Jiayan Zhou

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Mohamed Abdelrahman

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
    Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt)

  • Hao Xu

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Zian Wu

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Luncheng Cui

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Zhenhua Ma

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China)

  • Liguo Yang

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
    Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Xiang Li

    (National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
    Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
    Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

The water buffalo ( Bubalus bubalis ) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, which affects animal digestibility. Therefore, the present study aims to investigate the functional relation between three lignin monomeric compositions of coniferyl alcohol (G), ρ -coumaryl alcohol (H) and sinapyl alcohol (S) and ruminal fiber degradation in water buffalo. Hence, three female water buffaloes (Nili-Ravi × Mediterranean, five years old, 480 ± 20 kg) were assigned for an in vivo study by utilizing the nylon-bag method, examining eight kinds of roughage. All the experimental roughage types were analyzed for the effective degradability (ED) of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL) and hemicellulose (HC) fractions. Then, prediction models for the roughage fiber degradation were established based on the characteristics of lignin monomer content. The results showed that S, S/G and S/(G+S+H) were positively correlated with the ED of NDF, ADF, CEL and HC; H/S was negatively correlated. For the effective degradability of ADL (ADLD), S and S/(G+S+H) were positively correlated with it; H, H/G, H/S and H/(G+S+H) were negatively correlated. The model with the highest fitting degree was ADLD = 0.161 − 1.918 × H + 3.152 × S (R 2 = 0.758, p < 0.01). These results indicated that the lignin monomer composition is closely related to the utilization rate of roughage fiber. S-type lignin monomer plays a vital role in the fiber degradation of roughage. The experiment found the effect of lignin monomer composition on the degradation of fiber fractions using buffalo as the experimental animal and constructed prediction models, providing a scientific basis for building a new technological method using lignin composition to evaluate buffalo roughage. Furthermore, the capacity of ADL degradation of buffalo was proved in this experiment. In order to further explore the ability of lignin degradation by the buffalo, the DNA of rumen microorganisms was extracted for sequencing. The top three composition of rumen microorganisms at the genus level were Prevotella_1, 226, Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-011. Six strains with lignin degradation ability were screened from buffalo rumen contents. This experiment also revealed that the buffalos possess rumen microorganisms with lignin degradation potential.

Suggested Citation

  • Huimin Zhong & Jiayan Zhou & Mohamed Abdelrahman & Hao Xu & Zian Wu & Luncheng Cui & Zhenhua Ma & Liguo Yang & Xiang Li, 2021. "The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo ( Bubalus bubalis )," Agriculture, MDPI, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:1015-:d:658374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/1015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/1015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward M. Rubin, 2008. "Genomics of cellulosic biofuels," Nature, Nature, vol. 454(7206), pages 841-845, August.
    2. Yi Shao & Qineng Xia & Lin Dong & Xiaohui Liu & Xue Han & Stewart F. Parker & Yongqiang Cheng & Luke L. Daemen & Anibal J. Ramirez-Cuesta & Sihai Yang & Yanqin Wang, 2017. "Selective production of arenes via direct lignin upgrading over a niobium-based catalyst," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gebremedhin Welu Teklu & Kiros-Meles Ayimut & Fetien Abay Abera & Yemane G. Egziabher & Ibrahim Fitiwi, 2023. "Nutritive and Chemical Composition and In Vitro Digestibility of Cladodes of the Opuntia Species," Sustainability, MDPI, vol. 15(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    3. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    4. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    5. Debora Noma Okamoto & Vitor Baptista Ferrari & Suzan Pantaroto Vasconcellos & João Henrique Ghilardi Lago & Itamar Soares de Melo, 2017. "Actinomycetes as Tools for Biotransformations of Lignans," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(5), pages 1407-1409, October.
    6. Gonçalves da Silva, C., 2010. "The fossil energy/climate change crunch: Can we pin our hopes on new energy technologies?," Energy, Elsevier, vol. 35(3), pages 1312-1316.
    7. Guan, Weixiang & Chen, Xiao & Zhang, Jie & Hu, Haoquan & Liang, Changhai, 2020. "Catalytic transfer hydrogenolysis of lignin α-O-4 model compound 4-(benzyloxy)phenol and lignin over Pt/HNbWO6/CNTs catalyst," Renewable Energy, Elsevier, vol. 156(C), pages 249-259.
    8. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    9. Mario Aboytes-Ojeda & Krystel K. Castillo-Villar & Tun-hsiang E. Yu & Christopher N. Boyer & Burton C. English & James A. Larson & Lindsey M. Kline & Nicole Labbé, 2016. "A Principal Component Analysis in Switchgrass Chemical Composition," Energies, MDPI, vol. 9(11), pages 1-12, November.
    10. Liu, Peng & Li, Ao & Wang, Youmei & Cai, Qiuming & Yu, Haizhong & Li, Yuqi & Peng, Hao & Li, Qian & Wang, Yanting & Wei, Xiaoyang & Zhang, Ran & Tu, Yuanyuan & Xia, Tao & Peng, Liangcai, 2021. "Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops," Renewable Energy, Elsevier, vol. 174(C), pages 799-809.
    11. Zhang, Qi & Zhang, Pengfei & Pei, Zhijian & Rys, Malgorzata & Wang, Donghai & Zhou, Jiping, 2016. "Ultrasonic vibration-assisted pelleting of cellulosic biomass for ethanol manufacturing: An investigation on pelleting temperature," Renewable Energy, Elsevier, vol. 86(C), pages 895-908.
    12. Zhang, Qi & Zhang, Pengfei & Pei, Z.J. & Xu, Feng & Wang, Donghai & Vadlani, Praveen, 2015. "Effects of ultrasonic vibration-assisted pelleting on chemical composition and sugar yield of corn stover and sorghum stalk," Renewable Energy, Elsevier, vol. 76(C), pages 160-166.
    13. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    14. Li, Lin & Sun, Zeyi & Yao, Xufeng & Wang, Donghai, 2016. "Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation," Energy, Elsevier, vol. 96(C), pages 474-481.
    15. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    16. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    17. Ibrahim, Mohamad Faizal & Abd-Aziz, Suraini & Yusoff, Mohd. Ezreeza Mohamed & Phang, Lai Yee & Hassan, Mohd Ali, 2015. "Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel," Renewable Energy, Elsevier, vol. 77(C), pages 447-455.
    18. Luiz Filipe Paiva Brandão & Jez Willian Batista Braga & Paulo Anselmo Ziani Suarez, 2020. "Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model," Energy & Environment, , vol. 31(5), pages 733-754, August.
    19. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Su, HaiFeng & Lin, JiaFu & Tan, FuRong, 2017. "Progress and perspective of biosynthetic platform for higher-order biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 801-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:1015-:d:658374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.