IDEAS home Printed from https://ideas.repec.org/a/fip/fedreq/00065.html
   My bibliography  Save this article

How Likely Is the Zero Lower Bound?

Author

Abstract

We estimate the probability that the federal funds rate will be at or below the zero lower bound over a ten-year time horizon. We do so by specifying and estimating a time-varying parameter vector autoregressive model for key US macroeconomic aggregates. Based on the estimated model, we generate a distribution of future outcomes from which we compute such probabilities. We find that the zero lower bound probability ranges between 15 percent and 30 percent in the longer term depending on the specific measure used. In the near term, this probability is effectively zero. Robustness checks for historic episodes suggest that the TVP-VAR captures the underlying dynamics well and that it would have put substantial likelihood on the interest rate being at the zero lower bound during 2009-14.

Suggested Citation

  • Thomas A. Lubik & Christian Matthes, 2019. "How Likely Is the Zero Lower Bound?," Economic Quarterly, Federal Reserve Bank of Richmond, issue 1Q, pages 41-54.
  • Handle: RePEc:fip:fedreq:00065
    as

    Download full text from publisher

    File URL: https://www.richmondfed.org/-/media/richmondfedorg/publications/research/economic_quarterly/2019/q1/matthes.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hess Chung & Jean‐Philippe Laforte & David Reifschneider & John C. Williams, 2012. "Have We Underestimated the Likelihood and Severity of Zero Lower Bound Events?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(s1), pages 47-82, February.
    2. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    3. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    4. Thomas A. Lubik & Christian Matthes & Andrew Owens, 2016. "Beveridge Curve Shifts and Time-Varying Parameter VARs," Economic Quarterly, Federal Reserve Bank of Richmond, issue 3Q, pages 197-226.
    5. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    6. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    7. Michael Connolly & Taeyoung Doh, 2012. "The state space representation and estimation of a time-varying parameter VAR with stochastic volatility," Research Working Paper RWP 12-04, Federal Reserve Bank of Kansas City.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shaoyu & Zhang, Yuanyuan & Zhu, Chunhui, 2021. "A closed-form exact solution for pricing fixed-income variance swaps with affine-jump model," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    2. Ana M. Reyna & Hugo J. Fuentes & José A. Núñez, 2022. "Response of Mexican life and non-life insurers to the low interest rate environment," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(2), pages 409-433, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas A. Lubik & Christian Matthes, 2015. "Time-Varying Parameter Vector Autoregressions: Specification, Estimation, and an Application," Economic Quarterly, Federal Reserve Bank of Richmond, issue 4Q, pages 323-352.
    2. Pagliari, Maria Sole, 2024. "Does one (unconventional) size fit all? Effects of the ECB’s unconventional monetary policies on the euro area economies," European Economic Review, Elsevier, vol. 168(C).
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
    4. Danilo Leiva-Leon & Luis Uzeda, 2023. "Endogenous Time Variation in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 105(1), pages 125-142, January.
    5. Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland.
    6. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
    7. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2021. "Modelling Returns in US Housing Prices—You’re the One for Me, Fat Tails," JRFM, MDPI, vol. 14(11), pages 1-17, October.
    8. Antonio Pacifico, 2021. "Structural Panel Bayesian VAR with Multivariate Time-Varying Volatility to Jointly Deal with Structural Changes, Policy Regime Shifts, and Endogeneity Issues," Econometrics, MDPI, vol. 9(2), pages 1-35, May.
    9. Vito Polito, 2020. "Nonlinear Business Cycle and Optimal Policy: A VSTAR Perspective," CESifo Working Paper Series 8060, CESifo.
    10. Rozina Shaheen, 2019. "Impact of Fiscal Policy on Consumption and Labor Supply under a Time-Varying Structural VAR Model," Economies, MDPI, vol. 7(2), pages 1-15, June.
    11. Pacifico, Antonio, 2020. "Structural Panel Bayesian VAR with Multivariate Time-varying Volatility to jointly deal with Structural Changes, Policy Regime Shifts, and Endogeneity Issues," MPRA Paper 104292, University Library of Munich, Germany.
    12. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2016. "Choosing Prior Hyperparameters," Working Paper 16-9, Federal Reserve Bank of Richmond.
    13. Gary Koop & Dimitris Korobilis, 2019. "Forecasting with High‐Dimensional Panel VARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.
    14. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    15. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    16. Gabriel Arce‐Alfaro & Boris Blagov, 2023. "Monetary Policy Uncertainty and Inflation Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 70-94, February.
    17. Beckers, Benjamin & Bernoth, Kerstin, 2016. "Monetary Policy and Asset Mispricing," VfS Annual Conference 2016 (Augsburg): Demographic Change 145684, Verein für Socialpolitik / German Economic Association.
    18. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    19. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    20. Firmin Doko Tchatoka & Qazi Haque, 2024. "Revisiting the Macroeconomic Effects of Monetary Policy Shocks," The Economic Record, The Economic Society of Australia, vol. 100(329), pages 234-259, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedreq:00065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Pascasio (email available below). General contact details of provider: https://edirc.repec.org/data/frbrius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.