Internal Credit Risk Models and Digital Transformation: What to Prepare for? An Application to Poland
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
- Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007.
"Estimating probabilities of default with support vector machines,"
Discussion Paper Series 2: Banking and Financial Studies
2007,18, Deutsche Bundesbank.
- Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007. "Estimating probabilities of default with support vector machines," SFB 649 Discussion Papers 2007-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
- Jankowitsch, Rainer & Pichler, Stefan & Schwaiger, Walter S.A., 2007. "Modelling the economic value of credit rating systems," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 181-198, January.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007.
"The Default Risk of Firms Examined with Smooth Support Vector Machines,"
Discussion Papers of DIW Berlin
757, DIW Berlin, German Institute for Economic Research.
- Härdle, Wolfgang Karl & Lee, Yuh-Jye & Schäfer, Dorothea & Yeh, Yi-Ren, 2008. "The default risk of firms examined with smooth support vector machines," SFB 649 Discussion Papers 2008-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Natalia Nehrebecka, 2021. "COVID-19: stress-testing non-financial companies: a macroprudential perspective. The experience of Poland," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(2), pages 283-319, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:ers:journl:v:xxiv:y:2021:i:special3:p:719-736 is not listed on IDEAS
- Nehrebecka Natalia, 2018. "Predicting the Default Risk of Companies. Comparison of Credit Scoring Models: Logit Vs Support Vector Machines," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(2), pages 54-73, June.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
- Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
- Kéa Baret & Amélie Barbier-Gauchard & Théophilos Papadimitriou, 2021.
"Forecasting the Stability and Growth Pact compliance using Machine Learning,"
Working Papers of BETA
2021-01, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Kea Baret & Amélie Barbier-Gauchard & Theophilos Papadimitriou, 2023. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Post-Print hal-03121966, HAL.
- Kea Baret & Amelie Barbier-Gauchard & Theophilos Papadimitriou, 2022. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Working Papers 2022.11, International Network for Economic Research - INFER.
- Yao-Zhi Xu & Jian-Lin Zhang & Ying Hua & Lin-Yue Wang, 2019. "Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
- Tang, Lingxiao & Cai, Fei & Ouyang, Yao, 2019. "Applying a nonparametric random forest algorithm to assess the credit risk of the energy industry in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 563-572.
- Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011.
"Probability of default models of Russian banks,"
Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
- Peresetsky, Anatoly & Karminsky, Alexandr & Golovan, Sergei, 2004. "Probability of default models of Russian banks," BOFIT Discussion Papers 21/2004, Bank of Finland, Institute for Economies in Transition.
- repec:hum:wpaper:sfb649dp2008-005 is not listed on IDEAS
- Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
- Marco Locurcio & Francesco Tajani & Pierluigi Morano & Debora Anelli & Benedetto Manganelli, 2021. "Credit Risk Management of Property Investments through Multi-Criteria Indicators," Risks, MDPI, vol. 9(6), pages 1-23, June.
- Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
- Olga A. Bekirova & Andrey V. Zubarev, 2022. "Оценка Вероятности Банкротства Компаний Обрабатывающей Промышленности С Учетом Макроэкономической Конъюнктуры," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 12, pages 18-27, December.
- Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
- Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
- Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variabile Selection in Forecasting Models for Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
- Olga A. Bekirova & Andrey V. Zubarev, 2022. "Estimating the Bankruptcy Probability of Manufacturing Companies Considering Macroeconomic Conditions [Оценка Вероятности Банкротства Компаний Обрабатывающей Промышленности С Учетом Макроэкономичес," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 18-27, December.
- Peresetsky, Anatoly, 2013. "Modeling reasons for Russian bank license withdrawal: Unaccounted factors," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 30(2), pages 49-64.
- Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
More about this item
Keywords
Digitization; COVID-19; credit risk; big data; machine learning.;All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
- L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:special2-part1:p:719-736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.