IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v143y2023icp58-71.html
   My bibliography  Save this article

Cybersecurity regulatory challenges for connected and automated vehicles – State-of-the-art and future directions

Author

Listed:
  • Khan, Shah Khalid
  • Shiwakoti, Nirajan
  • Stasinopoulos, Peter
  • Warren, Matthew

Abstract

The technological advancements of Connected and Automated Vehicles (CAVs) are outpacing the current regulatory regime, potentially resulting in a disconnect between legislators, technology, and CAV stakeholders. Although many studies explore the regulatory requirements of operations of CAVs, studies on regulatory challenges specific to the cybersecurity of CAVs are also emerging and receiving lots of attention among researchers and practitioners. However, studies providing an up-to-date synthesis and analysis on CAVs regulatory requirements specific to cyber-risk reduction or mitigation are almost non-existent in the literature. This study aims to overcome this limitation by presenting a comprehensive overview of the role of key Intelligent Transportation Systems (ITS) stakeholders in CAV's cybersecurity. These stakeholders include road operators, service providers, automakers, consumers, repairers, and the general public.

Suggested Citation

  • Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Warren, Matthew, 2023. "Cybersecurity regulatory challenges for connected and automated vehicles – State-of-the-art and future directions," Transport Policy, Elsevier, vol. 143(C), pages 58-71.
  • Handle: RePEc:eee:trapol:v:143:y:2023:i:c:p:58-71
    DOI: 10.1016/j.tranpol.2023.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Qinaat & Alhajyaseen, Wael K.M. & Adnan, Muhammad & Almallah, Mustafa & Almukdad, Abdulkarim & Alqaradawi, Mohammed, 2021. "Autonomous vehicles between anticipation and apprehension: Investigations through safety and security perceptions," Transport Policy, Elsevier, vol. 110(C), pages 440-451.
    2. Tonn, Gina & Kesan, Jay P. & Zhang, Linfeng & Czajkowski, Jeffrey, 2019. "Cyber risk and insurance for transportation infrastructure," Transport Policy, Elsevier, vol. 79(C), pages 103-114.
    3. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Tonn, Gina & Reilly, Allison & Czajkowski, Jeffrey & Ghaedi, Hamed & Kunreuther, Howard, 2021. "U.S. transportation infrastructure resilience: Influences of insurance, incentives, and public assistance," Transport Policy, Elsevier, vol. 100(C), pages 108-119.
    5. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    6. Hamadneh, Jamil & Duleba, Szabolcs & Esztergár-Kiss, Domokos, 2022. "Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis," Transport Policy, Elsevier, vol. 126(C), pages 65-84.
    7. Beth‐Anne Schuelke‐Leech & Sara R. Jordan & Betsy Barry, 2019. "Regulating Autonomy: An Assessment of Policy Language for Highly Automated Vehicles," Review of Policy Research, Policy Studies Organization, vol. 36(4), pages 547-579, July.
    8. Nahmias-Biran, Bat-hen & Oke, Jimi B. & Kumar, Nishant, 2021. "Who benefits from AVs? Equity implications of automated vehicles policies in full-scale prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 92-107.
    9. Faber, Koen & van Lierop, Dea, 2020. "How will older adults use automated vehicles? Assessing the role of AVs in overcoming perceived mobility barriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 353-363.
    10. Amy Maxmen, 2018. "Self-driving car dilemmas reveal that moral choices are not universal," Nature, Nature, vol. 562(7728), pages 469-470, October.
    11. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    12. David Morris & Garikayi Madzudzo & Alexeis Garcia-Perez, 2018. "Cybersecurity and the auto industry: the growing challenges presented by connected cars," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 18(2), pages 105-118.
    13. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    14. Morris, David & Madzudzo, Garikayi & Garcia-Perez, Alexeis, 2020. "Cybersecurity threats in the auto industry: Tensions in the knowledge environment," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    15. Pettigrew, Simone & Cronin, Sophie L., 2019. "Stakeholder views on the social issues relating to the introduction of autonomous vehicles," Transport Policy, Elsevier, vol. 81(C), pages 64-67.
    16. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    17. Li, Shunxi & Sui, Pang-Chieh & Xiao, Jinsheng & Chahine, Richard, 2019. "Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 573-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pettigrew, Simone & Booth, Leon & Farrar, Victoria & Brown, Julie & Karl, Charles & Godic, Branislava & Vidanaarachchi, Rajith & Thompson, Jason, 2024. "Public support for proposed government policies to optimise the social benefits of autonomous vehicles," Transport Policy, Elsevier, vol. 149(C), pages 264-270.
    2. Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Chen, Yilun & Warren, Matthew, 2024. "The impact of perceived cyber-risks on automated vehicle acceptance: Insights from a survey of participants from the United States, the United Kingdom, New Zealand, and Australia," Transport Policy, Elsevier, vol. 152(C), pages 87-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Chen, Yilun & Warren, Matthew, 2024. "The impact of perceived cyber-risks on automated vehicle acceptance: Insights from a survey of participants from the United States, the United Kingdom, New Zealand, and Australia," Transport Policy, Elsevier, vol. 152(C), pages 87-101.
    2. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    3. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    4. Hansson, Lisa, 2020. "Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway," Research in Transportation Economics, Elsevier, vol. 83(C).
    5. Su-Yen Chen & Hsin-Yu Kuo & Chiachun Lee, 2020. "Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    6. Wali, Behram & Santi, Paolo & Ratti, Carlo, 2023. "Are californians willing to use shared automated vehicles (SAV) & renounce existing vehicles? An empirical analysis of factors determining SAV use & household vehicle ownership," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    7. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    9. Valery Michaux, 2022. "Transformations in the automotive sector: complex change, deeper reconfiguration or dangerous disruption? [Les six mutations du secteur automobile : simple transformation, reconfiguration plus prof," Post-Print hal-03736166, HAL.
    10. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Pütz, Fabian & Murphy, Finbarr & Mullins, Martin & O'Malley, Lisa, 2019. "Connected automated vehicles and insurance: Analysing future market-structure from a business ecosystem perspective," Technology in Society, Elsevier, vol. 59(C).
    12. Liu, Peng & Zhang, Yawen & He, Zhen, 2019. "The effect of population age on the acceptable safety of self-driving vehicles," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 341-347.
    13. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    14. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    15. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    16. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    17. Acheampong, Ransford A. & Legacy, Crystal & Kingston, Richard & Stone, John, 2023. "Imagining urban mobility futures in the era of autonomous vehicles—insights from participatory visioning and multi-criteria appraisal in the UK and Australia," Transport Policy, Elsevier, vol. 136(C), pages 193-208.
    18. Pettigrew, Simone & Booth, Leon & Farrar, Victoria & Brown, Julie & Karl, Charles & Godic, Branislava & Vidanaarachchi, Rajith & Thompson, Jason, 2024. "Public support for proposed government policies to optimise the social benefits of autonomous vehicles," Transport Policy, Elsevier, vol. 149(C), pages 264-270.
    19. Mwesiumo, Deodat & Halpern, Nigel & Bråthen, Svein & Budd, Thomas & Suau-Sanchez, Pere, 2023. "Perceived benefits as a driver and necessary condition for the willingness of air passengers to provide personal data for non-mandatory digital services at airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    20. Jing Gao & Sen Li, 2023. "Regulating For-Hire Autonomous Vehicles for An Equitable Multimodal Transportation Network," Papers 2301.05798, arXiv.org, revised Oct 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:143:y:2023:i:c:p:58-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.