IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v89y2016icp236-258.html
   My bibliography  Save this article

Reducing the wasted transportation capacity of Personal Rapid Transit systems: An integrated model and multi-objective optimization approach

Author

Listed:
  • Chebbi, Olfa
  • Chaouachi, Jouhaina

Abstract

This study addresses the problem of wasted transportation capacity in Personal Rapid Transit (PRT) systems. We propose a two-tier transportation model that integrates PRT and capillary transportation systems. We study a related multi-objective empty vehicle redistribution problem that attempts to minimize empty movement and the number of vehicles used. Furthermore, we design a hybrid multi-objective genetic algorithm that integrates multiple crossover operators and linear programming techniques to solve the proposed problem. Evaluations indicate that our algorithm produces satisfactory results, and simulations confirm the efficiency of our proposed two-tier transportation system.

Suggested Citation

  • Chebbi, Olfa & Chaouachi, Jouhaina, 2016. "Reducing the wasted transportation capacity of Personal Rapid Transit systems: An integrated model and multi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 236-258.
  • Handle: RePEc:eee:transe:v:89:y:2016:i:c:p:236-258
    DOI: 10.1016/j.tre.2015.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515001647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giannikos, Ioannis, 1998. "A multiobjective programming model for locating treatment sites and routing hazardous wastes," European Journal of Operational Research, Elsevier, vol. 104(2), pages 333-342, January.
    2. Prud'homme, Rémy & Bocarejo, Juan Pablo, 2005. "The London congestion charge: a tentative economic appraisal," Transport Policy, Elsevier, vol. 12(3), pages 279-287, May.
    3. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    4. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    5. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    6. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    7. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    8. Chung-Lun Li & David Simchi-Levi & Martin Desrochers, 1992. "On the Distance Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 40(4), pages 790-799, August.
    9. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    10. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    11. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    12. Ryley, Tim J. & A. Stanley, Peter & P. Enoch, Marcus & M. Zanni, Alberto & A. Quddus, Mohammed, 2014. "Investigating the contribution of Demand Responsive Transport to a sustainable local public transport system," Research in Transportation Economics, Elsevier, vol. 48(C), pages 364-372.
    13. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    14. Dowling, Robyn & Kent, Jennifer, 2015. "Practice and public–private partnerships in sustainable transport governance: The case of car sharing in Sydney, Australia," Transport Policy, Elsevier, vol. 40(C), pages 58-64.
    15. Vogel, Marie & Hamon, Ronan & Lozenguez, Guillaume & Merchez, Luc & Abry, Patrice & Barnier, Julien & Borgnat, Pierre & Flandrin, Patrick & Mallon, Isabelle & Robardet, Céline, 2014. "From bicycle sharing system movements to users: a typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset," Journal of Transport Geography, Elsevier, vol. 41(C), pages 280-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. Xiaohong Jiang & Ting Tang & Luhui Sun & Tengfei Lin & Xuan Duan & Xiucheng Guo, 2020. "Research on Consumers’ Preferences for the Self-Service Mode of Express Cabinets in Stations Based on the Subway Distribution to Promote Sustainability," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    3. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    4. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    5. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    6. Wu, Jiaming & Kulcsár, Balázs & Selpi, & Qu, Xiaobo, 2021. "A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 81-98.
    7. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    8. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    9. Waldemar GRABSKI & Wiktor B. DASZCZUK, 2017. "A Study On Cooperation Of Urban Transport Means: Prt And Light Rail," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(4), pages 5-14, December.
    10. Di Huang & Weiping Tong & Lumeng Wang & Xun Yang, 2019. "An Analytical Model for the Many-to-One Demand Responsive Transit Systems," Sustainability, MDPI, vol. 12(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    2. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    5. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    6. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L. & Kapiamba Nt., Joel, 2015. "Cobweb Heuristic for solving Multi-Objective Vehicle Routing Problem," MPRA Paper 66121, University Library of Munich, Germany.
    7. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    8. Jesus Gonzalez-Feliu, 2009. "The N-echelon Location routing problem: concepts and methods for tactical and operational planning," Working Papers halshs-00422492, HAL.
    9. Jesus Gonzalez-Feliu, 2012. "Cost optimisation in freight distribution with cross-docking: N-echelon location routing problem," Post-Print halshs-00565329, HAL.
    10. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    11. Hà, Minh Hoàng & Bostel, Nathalie & Langevin, André & Rousseau, Louis-Martin, 2013. "An exact algorithm and a metaheuristic for the multi-vehicle covering tour problem with a constraint on the number of vertices," European Journal of Operational Research, Elsevier, vol. 226(2), pages 211-220.
    12. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    13. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    14. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    15. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    16. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    17. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    18. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    19. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    20. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:89:y:2016:i:c:p:236-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.