IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v54y2013icp32-49.html
   My bibliography  Save this article

Mixed fleet dispatching in truckload relay network design optimization

Author

Listed:
  • Vergara, Hector A.
  • Root, Sarah

Abstract

We propose a mathematical formulation for strategic relay network design and dispatching method selection for full truckload transportation. The proposed model minimizes total transportation and installation costs of a mixed fleet dispatching system combining relay network and point-to-point dispatching. Operational constraints such as maximum driver tour length and load circuity are considered within the variable definition using predefined templates to generate feasible routes. High quality solutions for largely-sized problem instances are obtained in reasonable times. Computational results are analyzed to develop insights about the mixed fleet dispatching system and quantify its benefits over relay network-only and point-to-point dispatching.

Suggested Citation

  • Vergara, Hector A. & Root, Sarah, 2013. "Mixed fleet dispatching in truckload relay network design optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 32-49.
  • Handle: RePEc:eee:transe:v:54:y:2013:i:c:p:32-49
    DOI: 10.1016/j.tre.2013.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513000616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Don Taylor, G. & Whicker, Gary L. & Grant DuCote, W., 2009. "Design and analysis of delivery 'pipelines' in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 255-269, January.
    2. Don Taylor, G. & DuCote, W. Grant & Whicker, Gary L., 2006. "Regional fleet design in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(3), pages 167-190, May.
    3. Ali, Tarab H. & Radhakrishnan, Sridhar & Pulat, Simin & Gaddipati, Nagaiah C., 2002. "Relay network design in freight transportation systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 405-422, November.
    4. Taylor, G. D. & Meinert, T. S. & Killian, R. C. & Whicker, G. L., 1999. "Development and analysis of alternative dispatching methods in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(3), pages 191-205, September.
    5. Liu, Jiyin & Li, Chung-Lun & Chan, Chun-Yan, 2003. "Mixed truck delivery systems with both hub-and-spoke and direct shipment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(4), pages 325-339, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serkan Alacam & Asli Sencer, 2021. "Using Blockchain Technology to Foster Collaboration among Shippers and Carriers in the Trucking Industry: A Design Science Research Approach," Logistics, MDPI, vol. 5(2), pages 1-24, June.
    2. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.
    3. Amin Ziaeifar & Halit Üster, 2023. "Relay network design with direct shipment and multi-relay assignment," Annals of Operations Research, Springer, vol. 328(2), pages 1585-1614, September.
    4. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    5. Panitan Kewcharoenwong & Halit Üster, 2017. "Relay Network Design with Capacity and Link-Imbalance Considerations: A Lagrangean Decomposition Algorithm and Analysis," Transportation Science, INFORMS, vol. 51(4), pages 1177-1195, November.
    6. Kewcharoenwong, Panitan & Li, Qiaofeng & Üster, Halit, 2023. "Lagrangean relaxation algorithms for fixed-charge capacitated relay network design," Omega, Elsevier, vol. 121(C).
    7. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panitan Kewcharoenwong & Halit Üster, 2017. "Relay Network Design with Capacity and Link-Imbalance Considerations: A Lagrangean Decomposition Algorithm and Analysis," Transportation Science, INFORMS, vol. 51(4), pages 1177-1195, November.
    2. Halit Üster & Panitan Kewcharoenwong, 2011. "Strategic Design and Analysis of a Relay Network in Truckload Transportation," Transportation Science, INFORMS, vol. 45(4), pages 505-523, November.
    3. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    4. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    5. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    6. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    7. le Blanc, H.M. & Cruijssen, F. & Fleuren, H.A. & de Koster, M.B.M., 2006. "Factory gate pricing: An analysis of the Dutch retail distribution," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1950-1967, November.
    8. Yiyong Xiao & Abdullah Konak, 2017. "A variable neighborhood search for the network design problem with relays," Journal of Heuristics, Springer, vol. 23(2), pages 137-164, June.
    9. Zäpfel, Günther & Bögl, Michael, 2012. "Two heuristic solution concepts for the vehicle selection problem in line haul transports," European Journal of Operational Research, Elsevier, vol. 217(2), pages 448-458.
    10. Cruijssen, F., 2006. "Horizontal cooperation in transport and logistics," Other publications TiSEM ab6dbe68-aebc-4b03-8eea-d, Tilburg University, School of Economics and Management.
    11. Anita Odchimar & Shinya Hanaoka, 2017. "Intermodal freight network incorporating hub-and-spoke and direct calls for the archipelagic Philippines," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 352-378, June.
    12. Woxenius, Johan, 2012. "Directness as a key performance indicator for freight transport chains," Research in Transportation Economics, Elsevier, vol. 36(1), pages 63-72.
    13. Martina Jakara & Nikolina Brnjac, 2023. "Foliated Transport Networks in Intermodal Freight Transport," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    14. Warren B. Powell & Arun Marar & Jack Gelfand & Steve Bowers, 2002. "Implementing Real-Time Optimization Models: A Case Application From The Motor Carrier Industry," Operations Research, INFORMS, vol. 50(4), pages 571-581, August.
    15. Jiyoung Choi & Chungmok Lee & Sungsoo Park, 2018. "Dantzig–Wolfe decomposition approach to the vehicle assignment problem with demand uncertainty in a hybrid hub-and-spoke network," Annals of Operations Research, Springer, vol. 264(1), pages 57-87, May.
    16. Huang Xing, 2017. "The decision method of emergency supplies collection with fuzzy demand constraint under background of sudden disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 869-886, January.
    17. Qin, Hu & Zhang, Zizhen & Qi, Zhuxuan & Lim, Andrew, 2014. "The freight consolidation and containerization problem," European Journal of Operational Research, Elsevier, vol. 234(1), pages 37-48.
    18. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    19. Atefi, Reza & Salari, Majid & C. Coelho, Leandro & Renaud, Jacques, 2018. "The open vehicle routing problem with decoupling points," European Journal of Operational Research, Elsevier, vol. 265(1), pages 316-327.
    20. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:54:y:2013:i:c:p:32-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.