IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v56y2013icp50-69.html
   My bibliography  Save this article

Privacy protection method for fine-grained urban traffic modeling using mobile sensors

Author

Listed:
  • Sun, Zhanbo
  • Zan, Bin
  • Ban, Xuegang (Jeff)
  • Gruteser, Marco

Abstract

With the ubiquitous nature of mobile sensing technologies, privacy issues are becoming increasingly important, and need to be carefully addressed. Data needs for transportation modeling and privacy protection should be deliberately balanced for different applications. This paper focuses on developing privacy mechanisms that would simultaneously satisfy privacy protection and data needs for fine-grained urban traffic modeling applications using mobile sensors. To accomplish this, a virtual trip lines (VTLs) zone-based system and related filtering approaches are developed. Traffic-knowledge-based adversary models are proposed and tested to evaluate the effectiveness of such a privacy protection system by making privacy attacks. The results show that in addition to ensuring an acceptable level of privacy, the released datasets from the privacy-enhancing system can also be applied to urban traffic modeling with satisfactory results. Albeit application-specific, such a “Privacy-by-Design” approach would hopefully shed some light on other transportation applications using mobile sensors.

Suggested Citation

  • Sun, Zhanbo & Zan, Bin & Ban, Xuegang (Jeff) & Gruteser, Marco, 2013. "Privacy protection method for fine-grained urban traffic modeling using mobile sensors," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 50-69.
  • Handle: RePEc:eee:transb:v:56:y:2013:i:c:p:50-69
    DOI: 10.1016/j.trb.2013.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    2. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    3. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiribarren, Gabriel & Herrera, Juan Carlos, 2014. "Real time traffic states estimation on arterials based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 19-30.
    2. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    3. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    4. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    5. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laha, A. K. & Putatunda, Sayan, 2017. "Travel Time Prediction for Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    3. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    4. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    5. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    6. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    7. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    8. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    9. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    10. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    11. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    12. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    13. Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
    14. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    15. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    17. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    18. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    19. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    20. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:56:y:2013:i:c:p:50-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.