IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i8p749-765.html
   My bibliography  Save this article

An adaptive routing algorithm for in-vehicle route guidance systems with real-time information

Author

Listed:
  • Fu, Liping

Abstract

This paper examines the problem of routing a given vehicle through a traffic network in which travel time on each link can be modeled as a random variable and its realization can be estimated in advance and made available to the vehicle's routing system before it enters the link. The underlying problem is formulated as the closed-loop adaptive shortest path routing problem (CASPRP) with the objective of identifying only the immediate link, instead of a whole path, to account for the future availability of travel time information on individual links. Having formulated the problem as a dynamic program and identified the associated difficulties, we apply an approximate probabilistic treatment to the recurrent relations and propose a labeling algorithm to solve the resultant equations. The proposed algorithm is proved theoretically to have the same computational complexity as the traditional label-correcting (LC) algorithm for the classic shortest path problems. Computational experiments on a set of randomly generated networks and a realistic road network demonstrate the efficiency of the proposed algorithm and the advantage of adaptive routing systems.

Suggested Citation

  • Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:8:p:749-765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00019-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    2. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    3. Ishwar Murthy & Sumit Sarkar, 1996. "A Relaxation-Based Pruning Technique for a Class of Stochastic Shortest Path Problems," Transportation Science, INFORMS, vol. 30(3), pages 220-236, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    2. Du, Lili & Han, Lanshan & Li, Xiang-Yang, 2014. "Distributed coordinated in-vehicle online routing using mixed-strategy congestion game," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 1-17.
    3. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    4. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    5. Yan Zheng & Yanran Li & Chung-Ming Own & Zhaopeng Meng & Mengya Gao, 2018. "Real-time predication and navigation on traffic congestion model with equilibrium Markov chain," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    6. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    7. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    8. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    9. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    10. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    11. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    12. Zhong, Shiquan & Zhou, Lizhen & Ma, Shoufeng & Jia, Ning, 2012. "Effects of different factors on drivers’ guidance compliance behaviors under road condition information shown on VMS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1490-1505.
    13. Xinran Li & Haoxuan Kan & Xuedong Hua & Wei Wang, 2020. "Simulation-Based Electric Vehicle Sustainable Routing with Time-Dependent Stochastic Information," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    14. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    15. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    16. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    17. Liu, Siyuan & Qu, Qiang, 2016. "Dynamic collective routing using crowdsourcing data," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 450-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    2. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    3. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    4. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    5. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    6. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    7. Antonio Polimeni & Antonino Vitetta, 2013. "Optimising Waiting at Nodes in Time-Dependent Networks: Cost Functions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 805-818, March.
    8. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    9. Redmond, Michael & Campbell, Ann Melissa & Ehmke, Jan Fabian, 2022. "Reliability in public transit networks considering backup itineraries," European Journal of Operational Research, Elsevier, vol. 300(3), pages 852-864.
    10. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    11. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    12. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.
    13. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    14. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    15. Pijls, Wim & Post, Henk, 2009. "A new bidirectional search algorithm with shortened postprocessing," European Journal of Operational Research, Elsevier, vol. 198(2), pages 363-369, October.
    16. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2006. "Bicriterion a priori route choice in stochastic time-dependent networks," CORAL Working Papers L-2006-10, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    17. Murthy, Ishwar & Sarkar, Sumit, 1997. "Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function," European Journal of Operational Research, Elsevier, vol. 103(1), pages 209-229, November.
    18. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    19. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    20. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:8:p:749-765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.