IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v196y2025ics019126152500061x.html
   My bibliography  Save this article

Robust control for connected automated vehicle platoon with multiple-predecessor following topology considering communication loss

Author

Listed:
  • Yang, Lei
  • Sun, Zhanbo
  • Liu, Yafei
  • Chen, Linbin

Abstract

The paper presents a robust control method for effectively managing uncertainties and communication loss in a connected automated vehicle (CAV) platoon under the multiple-predecessor following (MPF) topology. The proposed approach incorporates uncertainties in vehicle dynamics, such as vehicle parameters and environmental resistances, into the closed-loop platoon system to enhance the robustness of the platoon controller. The impacts of communication loss are analyzed specifically for the MPF topology, considering potential disruptions in information flow among different numbers and locations of predecessors in a CAV platoon. A novel formulation of desired spacing, suitable for CAV platoon with the MPF topology under communication loss, is then developed based on the constant time headway (CTH) policy. Furthermore, the paper derives and proves the sufficient and necessary conditions for the local stability of the proposed robust platoon controller using Kharitonov's theorem. The sufficient conditions for string stability are also discussed through frequency-domain analysis and combined with the Lyapunov function to determine the relationship between average dwell time and maximum allowable delay, ensuring platoon string stability under switching communication topology. These conditions establish the stability region for the robust controller of a CAV platoon with varying locations and numbers of unconnected predecessors. Simulation experiments are conducted to demonstrate that the stability region of the controller diminishes as the number of unconnected predecessors increases, with the greatest impact observed when the communication with the nearest connected predecessor is lost. Additionally, the control performance is affected by uncertain dynamics and the range of time headway, resulting in a significant reduction in the stability region. The findings highlight the importance of fine-tuning control parameters within the stability region guided by the derived stability conditions to ensure both local and string stability of CAV platoons.

Suggested Citation

  • Yang, Lei & Sun, Zhanbo & Liu, Yafei & Chen, Linbin, 2025. "Robust control for connected automated vehicle platoon with multiple-predecessor following topology considering communication loss," Transportation Research Part B: Methodological, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:transb:v:196:y:2025:i:c:s019126152500061x
    DOI: 10.1016/j.trb.2025.103212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152500061X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:196:y:2025:i:c:s019126152500061x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.