Robust control for connected automated vehicle platoon with multiple-predecessor following topology considering communication loss
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2025.103212
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Talebpour, Alireza & Mahmassani, Hani S. & Hamdar, Samer H., 2018. "Effect of information availability on stability of traffic flow: Percolation theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 624-638.
- Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
- Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
- Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
- Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
- Wang, Jian & Zhou, Anye & Liu, Zhiyuan & Peeta, Srinivas, 2024. "Robust cooperative control strategy for a platoon of connected and autonomous vehicles against sensor errors and control errors simultaneously in a real-world driving environment," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
- Shen, Jinglai & Du, Lili, 2024. "Sequential feasibility and constraint properties of CAV platoons under various vehicle dynamics and safety distance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
- Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
- Zhou, Yang & Wang, Meng & Ahn, Soyoung, 2019. "Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 69-86.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Jian & Zhou, Anye & Liu, Zhiyuan & Peeta, Srinivas, 2024. "Robust cooperative control strategy for a platoon of connected and autonomous vehicles against sensor errors and control errors simultaneously in a real-world driving environment," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
- Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
- Liu, Bo & Zhang, Geng, 2021. "A double velocity control method for a discrete-time cooperative driving system with varying time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Feng, Weihao & Wang, Bohui, 2025. "Stability analysis and delayed feedback control for platoon of connected automated vehicles with V2X and V2V infrastructure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
- Long, Keke & Ma, Ke & Li, Qianwen & Li, Xiaopeng & Huang, Zhitong & James, Rachel & Ghiasi, Amir, 2025. "A comprehensive assessment of connected and automated vehicle analytical, modeling, and simulation tools," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
- Chen, Yujia & Dong, Changyin & Lyu, Keyun & Shi, Xiaomeng & Han, Gengyue & Wang, Hao, 2024. "A review of car-following and lane-changing models under heterogeneous environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
- Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
- Du, Jinxiao & Ma, Wei, 2024. "Maximin headway control of automated vehicles for system optimal dynamic traffic assignment in general networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
- Biyao Wang & Yi Han & Siyu Wang & Di Tian & Mengjiao Cai & Ming Liu & Lujia Wang, 2022. "A Review of Intelligent Connected Vehicle Cooperative Driving Development," Mathematics, MDPI, vol. 10(19), pages 1-31, October.
- Jiang, Jiwan & Zhou, Yang & Wang, Xin & Ahn, Soyoung, 2024. "On dynamic fundamental diagrams: Implications for automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
- Zong, Fang & Yue, Sheng & Zeng, Meng & Liu, Yixuan & Tang, Jinjun, 2025. "Environment reconstruction and trajectory planning for automated vehicles driving through signal intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
- Chandle Chae & Youngho Kim, 2023. "Investigation of Following Vehicles’ Driving Patterns Using Spectral Analysis Techniques," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
- Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
- Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
- Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
- Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
- Yao, Zhaosheng & Ran, Lun & Wang, Zhiyuan & Guo, Xian, 2024. "Integrated management of electric vehicle sharing system operations and Internet of Vehicles energy scheduling," Energy, Elsevier, vol. 309(C).
- Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:196:y:2025:i:c:s019126152500061x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.