IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v195y2025ics0191261525000682.html
   My bibliography  Save this article

A novel hierarchical perimeter control method for road networks considering boundary congestion in a mixed CAV and HV traffic environment

Author

Listed:
  • Ding, Heng
  • Wang, Liangwen
  • Zheng, Nan
  • Cheng, Zeyang
  • Zheng, Xiaoyan
  • Li, Jiye

Abstract

Under dynamic traffic demand conditions, two issues must be addressed when perimeter control is implemented for congested areas of a road network. The first is to avoid intersection spillback at the boundaries and expansion of the congestion, and the second is to improve the output traffic efficiency of the congested areas to quickly relieve traffic congestion. To address these two issues and solve the traffic congestion problem, in this paper, we adopt a dynamic buffer area to store boundary queuing vehicles and use connected and autonomous vehicle (CAV) technology to improve the traffic flow transmission efficiency of a congested area. First, considering the macro- and micro-level relationships between the macroscopic fundamental diagram (MFD) regions and buffer areas (link- and node-based), a traffic flow transmission model of the network embedded in dynamic buffer areas is built. Second, based on road network state sensing, a dynamic adjustment method of buffer volume is presented to optimize MFD region boundary flows. Third, a hierarchical control method based on model prediction (HCMMP) is proposed for the scenario of a single kernel network. The HCMMP's upper level adopts model predictive control (MPC) to adjust the traffic flow into the dynamic buffer area, and the lower level uses real-time CAV information to optimize the signal timing in the dynamic buffer area. Finally, a complex cellular multiregional road network is selected as a scenario case, and the proposed HCMMP is analysed and compared with no control (NC), proportional integral (PI) control, MPC (both without a dynamic buffer area), PI control with a dynamic buffer area (PIBA) and hierarchical control method based on the PI (HCMPI). The results show that the proposed HCMMP can improve the traffic efficiency, outperforming the other control methods.

Suggested Citation

  • Ding, Heng & Wang, Liangwen & Zheng, Nan & Cheng, Zeyang & Zheng, Xiaoyan & Li, Jiye, 2025. "A novel hierarchical perimeter control method for road networks considering boundary congestion in a mixed CAV and HV traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000682
    DOI: 10.1016/j.trb.2025.103219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    3. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    4. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    5. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    6. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    7. Haddad, Jack, 2017. "Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 1-25.
    8. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    9. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.
    10. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    11. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    12. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
    13. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    14. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    15. Arnott, Richard, 2014. "On the optimal target curbside parking occupancy rate," Economics of Transportation, Elsevier, vol. 3(2), pages 133-144.
    16. Hani S. Mahmassani, 2016. "50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations," Transportation Science, INFORMS, vol. 50(4), pages 1140-1162, November.
    17. Zheng, Nan & Geroliminis, Nikolas, 2016. "Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 36-58.
    18. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    19. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    20. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    21. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    22. Can Chen & Nikolas Geroliminis & Renxin Zhong, 2024. "An Iterative Adaptive Dynamic Programming Approach for Macroscopic Fundamental Diagram-Based Perimeter Control and Route Guidance," Transportation Science, INFORMS, vol. 58(4), pages 896-918, July.
    23. Pierce, Gregory & Willson, Hank & Shoup, Donald, 2015. "Optimizing the use of public garages: Pricing parking by demand," Transport Policy, Elsevier, vol. 44(C), pages 89-95.
    24. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    25. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    26. Gonzales, Eric J. & Chavis, Celeste & Li, Yuwei & Daganzo, Carlos F., 2009. "Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations with an Evidence-Based Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6dv195p7, Institute of Transportation Studies, UC Berkeley.
    27. Ding, Heng & Qian, Yu & Zheng, Xiaoyan & Bai, Haijian & Wang, Shiguang & Zhou, Jingwen, 2022. "Dynamic parking charge–perimeter control coupled method for a congested road network based on the aggregation degree characteristics of parking generation distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    28. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    29. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    30. Haddad, Jack & Shraiber, Arie, 2014. "Robust perimeter control design for an urban region," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 315-332.
    31. Keyvan-Ekbatani, Mehdi & Kouvelas, Anastasios & Papamichail, Ioannis & Papageorgiou, Markos, 2012. "Exploiting the fundamental diagram of urban networks for feedback-based gating," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    2. Ding, Heng & Qian, Yu & Zheng, Xiaoyan & Bai, Haijian & Wang, Shiguang & Zhou, Jingwen, 2022. "Dynamic parking charge–perimeter control coupled method for a congested road network based on the aggregation degree characteristics of parking generation distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    4. Mariotte, Guilhem & Leclercq, Ludovic & Batista, S.F.A. & Krug, Jean & Paipuri, Mahendra, 2020. "Calibration and validation of multi-reservoir MFD models: A case study in Lyon," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 62-86.
    5. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    6. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    7. Niu, Xiao-Jing & Zhao, Xiao-Mei & Xie, Dong-Fan & Liu, Feng & Bi, Jun & Lu, Chaoru, 2022. "Impact of large-scale activities on macroscopic fundamental diagram: Field data analysis and modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 241-268.
    8. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    9. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    10. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    11. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    12. Leclercq, Ludovic & Ladino, Andres & Becarie, Cécile, 2021. "Enforcing optimal routing through dynamic avoidance maps," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 118-137.
    13. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    14. Mohajerpoor, Reza & Saberi, Meead & Vu, Hai L. & Garoni, Timothy M. & Ramezani, Mohsen, 2020. "H∞ robust perimeter flow control in urban networks with partial information feedback," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 47-73.
    15. Xue, Jiawei & Ka, Eunhan & Feng, Yiheng & Ukkusuri, Satish V., 2024. "Network macroscopic fundamental diagram-informed graph learning for traffic state imputation," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    16. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.
    17. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    18. de Souza, Felipe & Minatto Saucedo, Rafael & Mousavizadeh, Omid & Castelan Carlson, Rodrigo & Keyvan-Ekbatani, Mehdi, 2024. "On the evaluation and selection of network-level traffic control policies: Perimeter control, TUC, and their combination," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    19. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    20. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.