IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v195y2025ics0191261525000372.html
   My bibliography  Save this article

How to improve transportation capacity of oversaturated metro lines? A flexible operation approach with extra-long train compositions

Author

Listed:
  • Tian, Xiaopeng
  • Yang, Lixing

Abstract

Under regular metro operation conditions, one critical bottleneck to improving metro transportation capacity is fixed-length train compositions. These fixed-length compositions are mandated to not exceed station platform lengths, thereby limiting the potential for increasing capacity to effectively accommodate oversaturated passenger demand. To this end, we focus on a flexible metro operating system equipped with extra-long train compositions, which allows trains to protrude beyond both ends of the station platforms for additional capacity. Driven by oversaturated and time-dependent passenger demand, we develop a compact integer linear programming model to determine train composition lengths and train-platform alignment relationships. When using commercial solvers to directly handle this model, complexity analyses and computational practice show that it is less efficient for large-scale experiments. We thus reformulate it as a column-based optimization model, while employing a column generation algorithm to solve its linear relaxation version and customizing a dynamic programming method to generate promising column variables. To achieve high-quality integer solutions, we carefully embed the column generation into a branch-and-bound procedure and elaborate some accelerating strategies through theoretical analyses. The approach is applied to several test instances defined by using hypothetical and real-world lines. The computational results demonstrate that the proposed approach can significantly reduce passenger waiting times and effectively handle large-scale problems.

Suggested Citation

  • Tian, Xiaopeng & Yang, Lixing, 2025. "How to improve transportation capacity of oversaturated metro lines? A flexible operation approach with extra-long train compositions," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000372
    DOI: 10.1016/j.trb.2025.103188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    2. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    3. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    4. Daganzo, Carlos F., 2022. "An operating system for extra long urban trains," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 323-340.
    5. Xiaowei Shi & Xiaopeng Li, 2021. "Operations Design of Modular Vehicles on an Oversaturated Corridor with First-in, First-out Passenger Queueing," Transportation Science, INFORMS, vol. 55(5), pages 1187-1205, September.
    6. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    7. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    8. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    9. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    10. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    11. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    12. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    13. Ying, Cheng-shuo & Chow, Andy H.F. & Nguyen, Hoa T.M. & Chin, Kwai-Sang, 2022. "Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 36-59.
    14. Shi, Xiaowei & Chen, Zhiwei & Li, Xiaopeng & Qu, Xiaobo, 2024. "Modular vehicles can reduce greenhouse gas emissions for departure flight baggage transportation," Journal of Air Transport Management, Elsevier, vol. 119(C).
    15. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    16. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    17. Tommaso Schettini & Ola Jabali & Federico Malucelli, 2022. "Demand-Driven Timetabling for a Metro Corridor Using a Short-Turning Acceleration Strategy," Transportation Science, INFORMS, vol. 56(4), pages 919-937, July.
    18. Ivan Contreras & Juan A. Díaz & Elena Fernández, 2011. "Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 41-55, February.
    19. Jesus Osorio & Shiyu Shen & Yanfeng Ouyang, 2024. "Planning Service Protocols for Extra-Long Trains with Transfers," Transportation Science, INFORMS, vol. 58(6), pages 1214-1234, November.
    20. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    21. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    22. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    23. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guangming & Zhong, Linhuan & Liu, Wei & Guo, Jing, 2024. "A flexible train composition strategy with extra-long trains for high-speed railway corridors with time-varying demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    2. Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
    3. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    4. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    5. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    7. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    9. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    10. Lu, Yahan & Yang, Lixing & Yang, Hai & Zhou, Housheng & Gao, Ziyou, 2023. "Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 27-55.
    11. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    12. Zhong, Linhuan & Xu, Guangming & Liu, Wei & Liu, Yang & Liu, Xinyi, 2025. "Destination-to-gate assignment to mitigate congestion-related risks in oversaturated metro lines: A new passenger flow control strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    13. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    14. Zhong, Linhuan & Xu, Guangming & Liu, Wei, 2024. "Energy-efficient and demand-driven train timetable optimization with a flexible train composition mode," Energy, Elsevier, vol. 305(C).
    15. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    16. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    17. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    18. Ying, Chengshuo & Chow, Andy H.F. & Yan, Yimo & Kuo, Yong-Hong & Wang, Shouyang, 2024. "Adaptive rescheduling of rail transit services with short-turnings under disruptions via a multi-agent deep reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    19. Pan, Hanchuan & Yang, Lixing & Liang, Zhe & Yang, Hai, 2024. "New Exact Algorithm for the integrated train timetabling and rolling stock circulation planning problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 906-929.
    20. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.