Adaptive signal control at partially connected intersections: A stochastic optimization model for uncertain vehicle arrival rates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2025.103161
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
- Wai Wong & S. C. Wong, 2019. "Unbiased Estimation Methods of Nonlinear Transport Models Based on Linearly Projected Data," Transportation Science, INFORMS, vol. 53(3), pages 665-682, May.
- Wong, Wai & Wong, S.C., 2016. "Biased standard error estimations in transport model calibration due to heteroscedasticity arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 72-92.
- Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
- Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
- Shaocheng Jia & S. C. Wong & Wai Wong, 2023. "Uncertainty Estimation of Connected Vehicle Penetration Rate," Transportation Science, INFORMS, vol. 57(5), pages 1160-1176, September.
- Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
- Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
- Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
- Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
- Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
- Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
- Silcock, J. P., 1997. "Designing signal-controlled junctions for group-based operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 157-173, March.
- Jenelius, Erik & Koutsopoulos, Haris N., 2015. "Probe vehicle data sampled by time or space: Consistent travel time allocation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 120-137.
- Wong, S. C., 1996. "Group-based optimisation of signal timings using the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 217-244, June.
- Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control Part II: Implementation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 376-397.
- Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
- Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
- Senlai Zhu & Ke Guo & Yuntao Guo & Huairen Tao & Quan Shi, 2019. "An Adaptive Signal Control Method with Optimal Detector Locations," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
- Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
- Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
- Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
- Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
- Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
- Martínez-Díaz, Margarita & Pérez, Ignacio, 2015. "A simple algorithm for the estimation of road traffic space mean speeds from data available to most management centres," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 19-35.
- Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
- Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
- Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
- Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
- Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 2021. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 48(4), pages 1767-1807, August.
- Wong, S. C. & Wong, W. T. & Leung, C. M. & Tong, C. O., 2002. "Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 291-312, May.
- Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
- Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
- Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
- Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
- Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
More about this item
Keywords
CV-based adaptive signal control; CV penetration rate uncertainty; Stochastic optimization; Generalized polynomial chaos expansion; Gradient-guided golden section search algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:193:y:2025:i:c:s0191261525000104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.