IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v154y2021icp175-206.html
   My bibliography  Save this article

Optimal driving for vehicle fuel economy under traffic speed uncertainty

Author

Listed:
  • Wu, Fuliang
  • Bektaş, Tolga
  • Dong, Ming
  • Ye, Hongbo
  • Zhang, Dali

Abstract

Minimizing the amount of fuel consumed by a moving vehicle can be formulated as an optimal control problem that determines the speed profile that the vehicle should follow. The fuel consumption is generally a function of speed and acceleration, and is optimized under external parameters (e.g., road grade or surrounding traffic conditions) known to affect fuel economy. Uncertainty in the traffic conditions, and in particular traffic speed, has seldom been investigated in this context, which may prevent the vehicle from following the optimal speed profile and consequently affect the fuel economy and the journey time. This paper describes two stochastic optimal speed control models for minimizing the fuel consumption of a vehicle traveling over a given stretch of road under a given time limit, where the maximum speed that can be achieved by the vehicle over the journey is assumed to be random and follow a certain probability distribution. The models include chance constraints that either (i) limit the probability that the desired vehicle speed exceeds the traffic speed, or (ii) bound the probability that the journey time limit is violated. The models are then extended into distributionally robust formulations to capture any uncertainties in the probability distribution of the traffic speed. Computational results are presented on the performance of the proposed models and to numerically assess the impact of traffic speed variability and journey duration on the desired speed trajectories: The results affirm that uncertainty in traffic speeds can significantly increase the amount of fuel consumption and the journey time of the speed profiles created by deterministic model. Such increase in journey duration can be mitigated by incorporating the stochasticity at the planning stage using the models described in this paper, and more so with the distributionally robust formulations particularly with higher levels of uncertainty. The solutions themselves generally exhibit low levels of speeds, which ensure the feasibility of the speed profile against any variabilities in the traffic speed.

Suggested Citation

  • Wu, Fuliang & Bektaş, Tolga & Dong, Ming & Ye, Hongbo & Zhang, Dali, 2021. "Optimal driving for vehicle fuel economy under traffic speed uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 175-206.
  • Handle: RePEc:eee:transb:v:154:y:2021:i:c:p:175-206
    DOI: 10.1016/j.trb.2021.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521001958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    2. Ma, Jiaqi & Li, Xiaopeng & Zhou, Fang & Hu, Jia & Park, B. Brian, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 421-441.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    5. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    6. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    7. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 509-538.
    8. Monastyrsky, V. V. & Golownykh, I. M., 1993. "Rapid computation of optimal control for vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 27(3), pages 219-227, June.
    9. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    10. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    11. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    12. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    13. repec:cdl:itsrrp:qt67f0v3zf is not listed on IDEAS
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    15. J. N. Hooker & A. B. Rose & G. F. Roberts, 1983. "Optimal Control of Automobiles for Fuel Economy," Transportation Science, INFORMS, vol. 17(2), pages 146-167, May.
    16. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Zhuang & Ye, Hongbo & Chung, Edward, 2025. "New formulations and solution approaches for train eco-driving problems," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    2. Wu, Fuliang & Ye, Hongbo & Bektaş, Tolga & Dong, Ming, 2025. "New and tractable formulations for the eco-driving and the eco-routing-and-driving problems," European Journal of Operational Research, Elsevier, vol. 321(2), pages 445-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Fuliang & Ye, Hongbo & Bektaş, Tolga & Dong, Ming, 2025. "New and tractable formulations for the eco-driving and the eco-routing-and-driving problems," European Journal of Operational Research, Elsevier, vol. 321(2), pages 445-461.
    2. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    3. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    4. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    5. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    6. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
    7. Zhou, Yizi & Mandania, Rupal & Liu, Jiyin, 2022. "Green vehicle routing and dynamic pricing for scheduling on-site services," International Journal of Production Economics, Elsevier, vol. 254(C).
    8. Wang, Pengling & Goverde, Rob M.P., 2017. "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 340-361.
    9. Huanhuan Lv & Yuzhao Zhang & Kang Huang & Xiaotong Yu & Jianjun Wu, 2019. "An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model," Energies, MDPI, vol. 12(14), pages 1-24, July.
    10. Wang, Sihan & Sun, Wei & Baldacci, Roberto & Elomri, Adel, 2025. "Exact solution of location–routing problems with heterogeneous fleet and weight-based carbon emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    11. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    12. Xiao, Zhuang & Ye, Hongbo & Chung, Edward, 2025. "New formulations and solution approaches for train eco-driving problems," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2019. "The multi-objective Steiner pollution-routing problem on congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 457-485.
    14. Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    15. Yang, Songpo & Liao, Feixiong & Wu, Jianjun & Timmermans, Harry J.P. & Sun, Huijun & Gao, Ziyou, 2020. "A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 85-113.
    16. Chen, Yujia & Dong, Changyin & Lyu, Keyun & Shi, Xiaomeng & Han, Gengyue & Wang, Hao, 2024. "A review of car-following and lane-changing models under heterogeneous environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    17. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    18. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:154:y:2021:i:c:p:175-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.