IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i2p105-117.html
   My bibliography  Save this article

Modeling capacity flexibility of transportation networks

Author

Listed:
  • Chen, Anthony
  • Kasikitwiwat, Panatda

Abstract

Flexibility of the transportation system is one of the important performance measures needed to deal with demand changes. In this paper, we provide a quantitative assessment of capacity flexibility for the passenger transportation network using bi-level network capacity models. Two approaches for assessing the value of capacity flexibility are proposed. One approach is based on the concept of reserve capacity, which reflects the flexibility with respect to changes in terms of demand volume only. The second approach allows for variations in the demand pattern in addition to changes in demand volume in order to more fully capture demand changes. Two models are developed in the second approach to consider two types of capacity flexibility. The total capacity flexibility allows all users to have both route choice and destination choice when estimating capacity flexibility. The limited capacity flexibility estimates how much more demand volume could be added to a fixed demand pattern by allowing the additional demand to deviate from the fixed demand pattern. Numerical examples are provided to demonstrate the different concepts of capacity flexibility for a passenger transportation system under demand changes.

Suggested Citation

  • Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:2:p:105-117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(10)00157-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oppenheim, Norbert, 1993. "Equilibrium trip distribution/assignment with variable destination costs," Transportation Research Part B: Methodological, Elsevier, vol. 27(3), pages 207-217, June.
    2. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    3. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    4. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    5. Morlok, Edward K. & Chang, David J., 2004. "Measuring capacity flexibility of a transportation system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 405-420, July.
    6. Feitelson, Eran & Salomon, Ilan, 2000. "The implications of differential network flexibility for spatial structures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 459-479, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    2. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    3. Chen, Hong & Cullinane, Kevin & Liu, Nan, 2017. "Developing a model for measuring the resilience of a port-hinterland container transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 282-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:2:p:105-117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.