IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i5p464-488.html
   My bibliography  Save this article

Synthesis of first practices and operational research approaches in activity-based travel demand modeling

Author

Listed:
  • Davidson, William
  • Donnelly, Robert
  • Vovsha, Peter
  • Freedman, Joel
  • Ruegg, Steve
  • Hicks, Jim
  • Castiglione, Joe
  • Picado, Rosella

Abstract

Regional travel models in the United States are clearly evolving from conventional models towards a new generation of more behaviorally realistic activity-based models. The new generation of regional travel demand models is characterized by three features: (1) an activity-based platform, that implies that modeled travel be derived within a general framework of the daily activities undertaken by households and persons, (2) a tour-based structure of travel where the tour is used as the basic unit of modeling travel instead of the elemental trip, and (3) micro-simulation modeling techniques that are applied at the fully-disaggregate level of persons and households, which convert activity and travel related choices from fractional-probability model outcomes into a series of discrete or "crisp" decisions. While the new generation of model has obvious conceptual advantages over the conventional four-step models, there are still numerous technical issues that have to be addressed as well as a better understanding of practical benefits should be achieved before the new generation of models can fully replace conventional models. The paper summarizes the recent successful experience in the development and application of activity-based demand models for Metropolitan Planning Organizations in the US. Moving activity-based approaches into practice is analyzed in a broad context of travel demand modeling market tendencies and policy implications.

Suggested Citation

  • Davidson, William & Donnelly, Robert & Vovsha, Peter & Freedman, Joel & Ruegg, Steve & Hicks, Jim & Castiglione, Joe & Picado, Rosella, 2007. "Synthesis of first practices and operational research approaches in activity-based travel demand modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 464-488, June.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:5:p:464-488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(06)00112-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    2. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chinh Ho & Corinne Mulley, 2013. "Tour-based mode choice of joint household travel patterns on weekend and weekday," Transportation, Springer, vol. 40(4), pages 789-811, July.
    2. Souche, Stéphanie, 2010. "Measuring the structural determinants of urban travel demand," Transport Policy, Elsevier, vol. 17(3), pages 127-134, May.
    3. Guo, Liya & Huang, Shan & Sadek, Adel W., 2013. "A novel agent-based transportation model of a university campus with application to quantifying the environmental cost of parking search," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 86-104.
    4. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    5. Manoj, M. & Verma, Ashish, 2015. "Activity–travel behaviour of non-workers from Bangalore City in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 400-424.
    6. Stéphanie Souche, 2009. "Un exemple d'estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(4), pages 759-779.
    7. repec:gam:jsusta:v:10:y:2018:i:3:p:830-:d:136504 is not listed on IDEAS
    8. Rodier, Caroline J. & Abraham, John E. & Dix, Brenda N. & Hunt, John Douglas Dr., 2009. "Equity Analysis of Land Use and Transport Plans Using an Integrated Spatial Model," Institute of Transportation Studies, Working Paper Series qt7vd6g464, Institute of Transportation Studies, UC Davis.
    9. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    10. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
    11. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    12. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    13. Sean Doherty & Abolfazl Mohammadian, 2011. "The validity of using activity type to structure tour-based scheduling models," Transportation, Springer, vol. 38(1), pages 45-63, January.
    14. Malayath, Manoj & Verma, Ashish, 2013. "Activity based travel demand models as a tool for evaluating sustainable transportation policies," Research in Transportation Economics, Elsevier, vol. 38(1), pages 45-66.
    15. Hatzopoulou, M. & Miller, E.J., 2009. "Transport policy evaluation in metropolitan areas: The role of modelling in decision-making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 323-338, May.
    16. Diana Kusumastuti & Els Hannes & Davy Janssens & Geert Wets & Benedict Dellaert, 2010. "Scrutinizing individuals’ leisure-shopping travel decisions to appraise activity-based models of travel demand," Transportation, Springer, vol. 37(4), pages 647-661, July.
    17. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters,in: A Handbook of Transport Economics, chapter 10 Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:5:p:464-488. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.