IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v36y2002i3p203-223.html
   My bibliography  Save this article

Optimal speed detector density for the network with travel time information

Author

Listed:
  • Chan, K. S.
  • Lam, William H. K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Chan, K. S. & Lam, William H. K., 2002. "Optimal speed detector density for the network with travel time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 203-223, March.
  • Handle: RePEc:eee:transa:v:36:y:2002:i:3:p:203-223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(00)00045-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Yagar, Sam & Iida, Yasunori & Asakura, Yasuo, 1994. "An algorithm for the inflow control problem on urban freeway networks with user-optimal flows," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 123-139, April.
    2. Ran, Bin & Rouphail, Nagui M. & Tarko, Andrzej & Boyce, David E., 1997. "Toward a class of link travel time functions for dynamic assignment models on signalized networks," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 277-290, August.
    3. Davis, Gary A., 1994. "Exact local solution of the continuous network design problem via stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 61-75, February.
    4. Yang, Hai & Kitamura, Ryuichi & Jovanis, Paul P. & Vaughn, Kenneth M. & Abdel-aty, Mohammed A. & Reddy, Prasuna Dvg, 1993. "Exploration Of Driver Route Choice With Advanced Traveler Information Using Neural Network Concepts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt53d2t6df, Institute of Transportation Studies, UC Berkeley.
    5. Maher, M. J. & Hughes, P. C., 1997. "A probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 341-355, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clark, Stephen D. & Watling, David P., 2002. "Sensitivity analysis of the probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 617-635, August.
    2. Maher, Michael J. & Zhang, Xiaoyan & Vliet, Dirck Van, 2001. "A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 23-40, January.
    3. Yin, Yafeng & Madanat, Samer M. & Lu, Xiao-Yun, 2009. "Robust improvement schemes for road networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 198(2), pages 470-479, October.
    4. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    5. Connors, Richard D. & Sumalee, Agachai & Watling, David P., 2007. "Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 593-615, July.
    6. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    7. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    8. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    9. Nijkamp, Peter & Reggiani, Aura & Tsang, Wai Fai, 2004. "Comparative modelling of interregional transport flows: Applications to multimodal European freight transport," European Journal of Operational Research, Elsevier, vol. 155(3), pages 584-602, June.
    10. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    11. Craig Olwert & Jean-Michel Guldmann, 2012. "A Computable General Equilibrium Model of the City: Impacts of Technology, Zoning, and Trade," Environment and Planning A, , vol. 44(1), pages 237-253, January.
    12. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    13. Hai Yang, 1999. "Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion," Transportation, Springer, vol. 26(3), pages 299-322, August.
    14. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    15. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    16. Yang, Hai & Bell, Michael G. H., 2001. "Transport bilevel programming problems: recent methodological advances," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 1-4, January.
    17. Malavasi, Gabriele & Ricci, Stefano, 2001. "Simulation of stochastic elements in railway systems using self-learning processes," European Journal of Operational Research, Elsevier, vol. 131(2), pages 262-272, June.
    18. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    19. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    20. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:36:y:2002:i:3:p:203-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.