IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v33y1999i6p449-465.html
   My bibliography  Save this article

Stochastic freight flow patterns: implications for fleet optimization

Author

Listed:
  • Hall, Randolph W.

Abstract

Trucking, rail and other types of transportation networks share the common feature of moving equipment and crews between spatially separated terminals to accommodate the transportation of goods or people. This paper develops measures for temporal and spatial imbalances in freight flows, and applies these measures to a major trucking network. Fundamentally, the randomness inherent to a system of terminals is mitigated by pooling freight flows among terminal groups, and by pooling freight flows over many time periods. In the terminal network that we examined, long-run freight imbalances ensure that empty equipment movements must equal or exceed 13.3% of loaded movements at individual terminals and 8.2% of loaded movements at terminal groups. Due to short-run freight imbalances, the number of empty movements could increase by about 50% over the long-run average; greater increases would occur if equipment flows must be balanced on each travel lane. ©

Suggested Citation

  • Hall, Randolph W., 1999. "Stochastic freight flow patterns: implications for fleet optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 449-465, August.
  • Handle: RePEc:eee:transa:v:33:y:1999:i:6:p:449-465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00063-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George J. Beaujon & Mark A. Turnquist, 1991. "A Model for Fleet Sizing and Vehicle Allocation," Transportation Science, INFORMS, vol. 25(1), pages 19-45, February.
    2. Cynthia Barnhart & Yosef Sheffi, 1993. "A Network-Based Primal-Dual Heuristic for the Solution of Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 27(2), pages 102-117, May.
    3. Teodor Gabriel Crainic & Louis Delorme, 1993. "Dual-Ascent Procedures for Multicommodity Location-Allocation Problems with Balancing Requirements," Transportation Science, INFORMS, vol. 27(2), pages 90-101, May.
    4. Teodor Gabriel Crainic & Michel Gendreau & Pierre Dejax, 1993. "Dynamic and Stochastic Models for the Allocation of Empty Containers," Operations Research, INFORMS, vol. 41(1), pages 102-126, February.
    5. William C. Jordan & Mark A. Turnquist, 1983. "A Stochastic, Dynamic Network Model for Railroad Car Distribution," Transportation Science, INFORMS, vol. 17(2), pages 123-145, May.
    6. Yafeng Du & Randolph Hall, 1997. "Fleet Sizing and Empty Equipment Redistribution for Center-Terminal Transportation Networks," Management Science, INFORMS, vol. 43(2), pages 145-157, February.
    7. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    8. Warren B. Powell, 1986. "A Stochastic Model of the Dynamic Vehicle Allocation Problem," Transportation Science, INFORMS, vol. 20(2), pages 117-129, May.
    9. Warren B. Powell & Yosef Sheffi & Kenneth S. Nickerson & Kevin Butterbaugh & Susan Atherton, 1988. "Maximizing Profits for North American Van Lines' Truckload Division: A New Framework for Pricing and Operations," Interfaces, INFORMS, vol. 18(1), pages 21-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djurdjica Stojanović & Svetlana Nikoličić & Milica Miličić, 2011. "Transport Fleet Sizing By Using Make And Buy Decision-Making," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 56(190), pages 77-102, July – Se.
    2. Li, Jing-An & Leung, Stephen C.H. & Wu, Yue & Liu, Ke, 2007. "Allocation of empty containers between multi-ports," European Journal of Operational Research, Elsevier, vol. 182(1), pages 400-412, October.
    3. Hall, Randolph W. & Zhong, Hongsheng, 2002. "Decentralized inventory control policies for equipment management in a many-to-many network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 849-865, December.
    4. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    5. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Randolph W. & Zhong, Hongsheng, 2002. "Decentralized inventory control policies for equipment management in a many-to-many network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 849-865, December.
    2. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    3. Dong‐Ping Song & Jonathan Carter, 2008. "Optimal empty vehicle redistribution for hub‐and‐spoke transportation systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(2), pages 156-171, March.
    4. D-P Song, 2007. "Characterizing optimal empty container reposition policy in periodic-review shuttle service systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 122-133, January.
    5. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    6. Shi, Ning & Song, Haiqing & Powell, Warren B., 2014. "The dynamic fleet management problem with uncertain demand and customer chosen service level," International Journal of Production Economics, Elsevier, vol. 148(C), pages 110-121.
    7. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    8. Milenković, Miloš S. & Bojović, Nebojša J. & Švadlenka, Libor & Melichar, Vlastimil, 2015. "A stochastic model predictive control to heterogeneous rail freight car fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 162-198.
    9. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    10. George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
    11. Spieckermann, Sven & Vo[ss], Stefan, 1995. "A case study in empty railcar distribution," European Journal of Operational Research, Elsevier, vol. 87(3), pages 586-598, December.
    12. Song, Dong-Ping & Dong, Jing-Xin, 2011. "Effectiveness of an empty container repositioning policy with flexible destination ports," Transport Policy, Elsevier, vol. 18(1), pages 92-101, January.
    13. Yan, Shangyao & Bernstein, David & Sheffi, Yosef, 1995. "Intermodal pricing using network flow techniques," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 171-180, June.
    14. Huseyin Topaloglu & Warren Powell, 2007. "Incorporating Pricing Decisions into the Stochastic Dynamic Fleet Management Problem," Transportation Science, INFORMS, vol. 41(3), pages 281-301, August.
    15. Claudia Archetti & Martin Savelsbergh, 2009. "The Trip Scheduling Problem," Transportation Science, INFORMS, vol. 43(4), pages 417-431, November.
    16. Warren B. Powell & Michael T. Towns & Arun Marar, 2000. "On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance," Transportation Science, INFORMS, vol. 34(1), pages 67-85, February.
    17. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    18. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    19. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    20. Raymond K. Cheung & B. Muralidharan, 2000. "Dynamic Routing for Priority Shipments in LTL Service Networks," Transportation Science, INFORMS, vol. 34(1), pages 86-98, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:33:y:1999:i:6:p:449-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.