IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v27y1993i2p93-100.html
   My bibliography  Save this article

Empirical analysis of bus transit on-time performance

Author

Listed:
  • Strathman, James G.
  • Hopper, Janet R.

Abstract

This paper presents an empirical assessment of factors affecting on-time performance in Portland, Oregon's fixed route bus system. A multinomial logit model relating early, late and on-time bus arrivals to route, schedule, driver and operating characteristics is developed and estimated. The model results show that the probability of on-time failures increases during PM peak periods, with longer headways and higher levels of passenger activity, and as buses progress further along their routes. Part-time drivers are also more likely to fall behind schedule. With few exceptions, schedule changes and operations-control actions can mitigate these effects.

Suggested Citation

  • Strathman, James G. & Hopper, Janet R., 1993. "Empirical analysis of bus transit on-time performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 93-100, April.
  • Handle: RePEc:eee:transa:v:27:y:1993:i:2:p:93-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0965-8564(93)90065-S
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakrabarti, Sandip & Giuliano, Genevieve, 2015. "Does service reliability determine transit patronage? Insights from the Los Angeles Metro bus system," Transport Policy, Elsevier, vol. 42(C), pages 12-20.
    2. Hall, Randolph & Dessouky, Maged & Zhang, Lei & Singh, Ajay & Patel, Vishal, 1999. "Evaluation of ITS Technology for Bus Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2nq1824t, Institute of Transportation Studies, UC Berkeley.
    3. Durán-Hormazábal, Elsa & Tirachini, Alejandro, 2016. "Estimation of travel time variability for cars, buses, metro and door-to-door public transport trips in Santiago, Chile," Research in Transportation Economics, Elsevier, vol. 59(C), pages 26-39.
    4. Tétreault, Paul R. & El-Geneidy, Ahmed M., 2010. "Estimating bus run times for new limited-stop service using archived AVL and APC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 390-402, July.
    5. Tisato, Peter, 1998. "Service unreliability and bus subsidy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 423-436, August.
    6. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
    7. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    8. Zhang Xiaoliang & Jia Limin, 2021. "Analysis of Bus Line Operation Reliability Based on Copula Function," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    9. Sun, Lijun & Tirachini, Alejandro & Axhausen, Kay W. & Erath, Alexander & Lee, Der-Horng, 2014. "Models of bus boarding and alighting dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 447-460.
    10. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    11. W. Klumpenhouwer & S. C. Wirasinghe, 2016. "Cost-of-crowding model for light rail train and platform length," Public Transport, Springer, vol. 8(1), pages 85-101, March.
    12. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    13. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    14. Chen, Mei & Liu, Xiaobo, 2005. "Using a Neural Network to Analyze the Impact of Passenger Activity on Bus Dwell Time and Travel Time," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 44(3).
    15. Dessouky, Maged & Singh, Ajay & Hall, Randolph, 1997. "Transit ITS Simulator (TRANSITS): Design Document," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt49k184rv, Institute of Transportation Studies, UC Berkeley.
    16. Ji, Yanjie & Gao, Liangpeng & Chen, Dandan & Ma, Xinwei & Zhang, Ruochen, 2018. "How does a static measure influence passengers’ boarding behaviors and bus dwell time? Simulated evidence from Nanjing bus stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 13-25.
    17. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    18. Hall, Randolph & Dessouky, Maged & Nowroozi, Ali & Singh, A., 1997. "Evaluation Of ITS Technology For Bus Timed Transfers," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1wq2v1p4, Institute of Transportation Studies, UC Berkeley.
    19. Chen, Xumei & Yu, Lei & Zhang, Yushi & Guo, Jifu, 2009. "Analyzing urban bus service reliability at the stop, route, and network levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 722-734, October.
    20. Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
    21. Yu, Bin & Yang, Zhongzhen & Li, Shan, 2012. "Real-time partway deadheading strategy based on transit service reliability assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1265-1279.
    22. Mohammad-Reza Namazi-Rad & Michelle Dunbar & Hadi Ghaderi & Payam Mokhtarian, 2015. "Constrained Optimization of Average Arrival Time via a Probabilistic Approach to Transport Reliability," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    23. Salicrú, M. & Fleurent, C. & Armengol, J.M., 2011. "Timetable-based operation in urban transport: Run-time optimisation and improvements in the operating process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 721-740, October.
    24. Deepa, L. & Pinjari, Abdul Rawoof & Nirmale, Sangram Krishna & Biswas, Mehek & Srinivasan, Karthik K., 2023. "The adverse impact of headway variability on bus transit ridership: Evidence from Bengaluru, India," Transport Policy, Elsevier, vol. 141(C), pages 343-356.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:27:y:1993:i:2:p:93-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.