IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v192y2025ics0965856424004105.html
   My bibliography  Save this article

The implications of drivers’ ride acceptance decisions on the operations of ride-sourcing platforms

Author

Listed:
  • Ashkrof, Peyman
  • Ghasemi, Farnoud
  • Kucharski, Rafał
  • Homem de Almeida Correia, Gonçalo
  • Cats, Oded
  • van Arem, Bart

Abstract

As a two-sided digital platform, ride-sourcing has disruptively penetrated the mobility market. Ride-sourcing companies provide door-to-door transport services by connecting passengers with independent service suppliers labelled as “driver-partners”. Once a passenger submits a ride request, the platform attempts to match the request with a nearby available driver. Drivers have the freedom to accept or decline ride requests. The consequences of this decision, which is made at the operation level, have remained largely unknown in the literature. Using agent-based simulation modelling on the realistic case study of the city of Amsterdam, the Netherlands, we study the impacts of drivers’ ride acceptance behaviour, estimated from unique empirical data, on the ride-sourcing system where the platform applies regular and surge pricing strategies, and riders may revoke their requests and reject the received offers. Furthermore, we delve into the implications of various supply–demand intensities, a centralised fleet (i.e., mandatory acceptance on each ride request) versus a decentralised fleet (i.e., ride acceptance decision by each driver), ride acceptance rates, and surge pricing settings. We find that the ride acceptance decision of ride-sourcing drivers has far-reaching consequences for system performance in terms of passengers’ waiting time, driver’s revenue, operating costs, and profit, all of which are highly dependent on the ratio between demand and supply. As the system undergoes a transition from undersupplied (i.e., real-time demand locally exceeds available drivers) to balanced and then oversupplied state (i.e., more available drivers than real-time demand), ride acceptance decisions result in higher income inequality. A high acceptance rate among drivers may lead to more rides, but it does not necessarily increase their profit. Surge pricing is found to be asymmetrically in favour of all the parties despite adverse effects on the demand side due to higher trip fare. This study offers insights into both the aggregated and disaggregated levels of ride-sourcing system operations and outlines a series of transport policy and practice implications in cities that offer such ride-sourcing systems.

Suggested Citation

  • Ashkrof, Peyman & Ghasemi, Farnoud & Kucharski, Rafał & Homem de Almeida Correia, Gonçalo & Cats, Oded & van Arem, Bart, 2025. "The implications of drivers’ ride acceptance decisions on the operations of ride-sourcing platforms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004105
    DOI: 10.1016/j.tra.2024.104362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424004105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gérard P. Cachon & Kaitlin M. Daniels & Ruben Lobel, 2017. "The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 368-384, July.
    2. Harish Guda & Upender Subramanian, 2019. "Your Uber Is Arriving: Managing On-Demand Workers Through Surge Pricing, Forecast Communication, and Worker Incentives," Management Science, INFORMS, vol. 67(5), pages 1995-2014, May.
    3. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    4. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Ke Xu & Luping Sun & Jingchen Liu & Hansheng Wang, 2018. "An empirical investigation of taxi driver response behavior to ride-hailing requests: A spatio-temporal perspective," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
    6. Rafał Kucharski & Oded Cats, 2022. "Simulating two-sided mobility platforms with MaaSSim," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-20, June.
    7. Zha, Liteng & Yin, Yafeng & Du, Yuchuan, 2018. "Surge pricing and labor supply in the ride-sourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 708-722.
    8. Chengbin Peng & Xiaogang Jin & Ka-Chun Wong & Meixia Shi & Pietro Liò, 2012. "Collective Human Mobility Pattern from Taxi Trips in Urban Area," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    9. Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    2. Hu, Xinru & Zhou, Shuiyin & Luo, Xiaomeng & Li, Jianbin & Zhang, Chi, 2024. "Optimal pricing strategy of an on-demand platform with cross-regional passengers," Omega, Elsevier, vol. 122(C).
    3. Yongwook Paik & Christos A. Makridis, 2023. "The social value of a ridesharing platform: a hedonic pricing approach," Empirical Economics, Springer, vol. 64(5), pages 2125-2150, May.
    4. Chen, Mingyang & Zhao, Daozhi & Gong, Yeming & Rekik, Yacine, 2022. "An on-demand service platform with self-scheduling capacity: Uniform versus multiplier-based pricing," International Journal of Production Economics, Elsevier, vol. 243(C).
    5. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219, Cowles Foundation for Research in Economics, Yale University.
    6. Meijian Yang & Enjun Xia, 2021. "A Systematic Literature Review on Pricing Strategies in the Sharing Economy," Sustainability, MDPI, vol. 13(17), pages 1-28, August.
    7. repec:diw:diwwpp:dp1889 is not listed on IDEAS
    8. Tian, Lijun & Jiang, Xiaolan & Wu, Wenxiang & Huang, Haijun, 2024. "Becoming a freelancer or contractor? Drivers’ contractual mode and schedule decisions in a dual sourcing market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    9. Li, Xiang & Ge, Jingyun, 2025. "Wild goose chase or not? Equilibrium in a hybrid ride-hailing market," Transport Policy, Elsevier, vol. 160(C), pages 73-88.
    10. Dong, Tingting & Xu, Zhengtian & Luo, Qi & Yin, Yafeng & Wang, Jian & Ye, Jieping, 2021. "Optimal contract design for ride-sourcing services under dual sourcing," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 289-313.
    11. Maximilian Schäfer & Kevin Ducbao Tran, 2020. "Airbnb, Hotels, and Localized Competition," Discussion Papers of DIW Berlin 1889, DIW Berlin, German Institute for Economic Research.
    12. Huarng, Kun-Huang & Yu, Tiffany Hui-Kuang, 2020. "The impact of surge pricing on customer retention," Journal of Business Research, Elsevier, vol. 120(C), pages 175-180.
    13. Soheil Ghili, 2021. "Optimal Bundling: Characterization, Interpretation, and Implications for Empirical Work," Cowles Foundation Discussion Papers 2273, Cowles Foundation for Research in Economics, Yale University.
    14. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219R, Cowles Foundation for Research in Economics, Yale University, revised Aug 2020.
    15. Tang, Wei & Xie, Ningke & Mo, Dong & Cai, Zeen & Lee, Der-Horng & Chen, Xiqun (Michael), 2023. "Optimizing subsidy strategies of the ride-sourcing platform under government regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    16. Soheil Ghili & Vineet Kumar, 2021. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Papers 2108.05954, arXiv.org.
    17. Deerfield, Amanda & Elert, Niklas, 2022. "Entrepreneurship and Regulatory Voids: The Case of Ridesharing," Working Paper Series 1426, Research Institute of Industrial Economics.
    18. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Omar Besbes & Francisco Castro & Ilan Lobel, 2021. "Surge Pricing and Its Spatial Supply Response," Management Science, INFORMS, vol. 67(3), pages 1350-1367, March.
    20. Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.
    21. Saif Benjaafar & Ming Hu, 2020. "Operations Management in the Age of the Sharing Economy: What Is Old and What Is New?," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 93-101, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.