IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v150y2021icp33-48.html
   My bibliography  Save this article

Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: A Hazard-based duration modelling approach

Author

Listed:
  • Haque, Md. Mazharul
  • Oviedo-Trespalacios, Oscar
  • Sharma, Anshuman
  • Zheng, Zuduo

Abstract

The availability of advisory warnings via Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication in the connected environments is expected to gradually increase over the next few years. Much of the research on advisory warning systems have examined driving behaviour in response to unexpected driving hazards; however, very little research has been conducted on common driving interactions such as interacting with pedestrians at pedestrian crossings. Therefore, the aim of this study is to investigate the effects of the connected environment on driving behaviour at pedestrian crossings. The connected environment was designed within the CARRS-Q advanced driving simulator. A combination of auditory (beep sound) and imagery message was simultaneously displayed on the windscreen to advise the driver on the presence of a pedestrian entering from a sidewalk. Seventy-eight licensed drivers drove the simulator in two driving conditions, namely, baseline and connected environment. The participants were 18–65 years old, and a third of them were females. Drivers' response to the driving aids and the braking behaviour were analysed in the latent response phase and the observable response phase, and the corresponding response times were modelled using the hazard-based duration modelling approach. In particular, this study applied the Weibull accelerated failure time model with shared frailty accounting for multiple observations from the same driver. Results showed that the time taken to respond to the pedestrian in the latent response phase was longer when the advisory warning was provided to the drivers, but the corresponding time in the observable response phase was shorter, indicating that drivers take an informed decision in the connected environment. Moreover, the safety margin—measured in terms of time-to-collision—was higher in the connected environment than the traditional driving environment, indicating a safer behavioural adaptation towards the connected environment.

Suggested Citation

  • Haque, Md. Mazharul & Oviedo-Trespalacios, Oscar & Sharma, Anshuman & Zheng, Zuduo, 2021. "Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: A Hazard-based duration modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 33-48.
  • Handle: RePEc:eee:transa:v:150:y:2021:i:c:p:33-48
    DOI: 10.1016/j.tra.2021.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421001427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prateek Bansal & Kara M. Kockelman, 2018. "Are we ready to embrace connected and self-driving vehicles? A case study of Texans," Transportation, Springer, vol. 45(2), pages 641-675, March.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    4. Roberto G. Gutierrez, 2002. "Parametric frailty and shared frailty survival models," Stata Journal, StataCorp LP, vol. 2(1), pages 22-44, February.
    5. Harms, Ilse M. & Bingen, Leo & Steffens, Jasper, 2020. "Addressing the awareness gap: A combined survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 65-77.
    6. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    7. Saifuzzaman, Mohammad & Zheng, Zuduo & Mazharul Haque, Md. & Washington, Simon, 2015. "Revisiting the Task–Capability Interface model for incorporating human factors into car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. WooKeol Cho & Jinhee Kim & Jin-Hyuk Chung, 2023. "A Need-Based Approach for Modeling Recurrent Discretionary Activity Participation Patterns for Travel Demand Analysis," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    2. Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    2. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    3. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish, 2019. "Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and validation," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 49-75.
    4. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    5. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    6. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    8. Varotto, Silvia F. & Farah, Haneen & Toledo, Tomer & van Arem, Bart & Hoogendoorn, Serge P., 2018. "Modelling decisions of control transitions and target speed regulations in full-range Adaptive Cruise Control based on Risk Allostasis Theory," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 318-341.
    9. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    10. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    11. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    12. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    13. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    14. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    15. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    16. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    17. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    18. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    19. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    20. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:150:y:2021:i:c:p:33-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.