IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v187y2023ics0040162522007211.html
   My bibliography  Save this article

Citizens' attitudes towards technological innovations: The case of urban air mobility

Author

Listed:
  • Kalakou, Sofia
  • Marques, Catarina
  • Prazeres, Duarte
  • Agouridas, Vassilis

Abstract

Technological innovations and their enabled services support business growth and promise benefits for societies. In the mobility sector, technology adoption and its sustainable integration into current transport systems strongly depend on citizens' perspectives both as users and non-users. Following a bottom-up approach originating from the societal views, this study analyses the attitude of citizens towards Urban Air Mobility (UAM) and brings insights into the citizens' expectations of the role that UAM can play in inhabited environments. The views of 485 residents of Lisbon in Portugal were collected to address aspects of UAM receptiveness. Six clusters of citizens were obtained expressing different attitudes towards UAM: open-minded, pollution sensitive, first movers, emergency supporters, skepticals and deniers. The designated clusters require different policies and practices from the side of policymakers and transport operators. The results indicate that positive attitudes towards UAM are characterized by higher intention to use such services suggesting that actions need to be taken to better comprehend each cluster's expectations. The study sheds light on societal aspects of technology deployment and provides insights to UAM stakeholders for the sustainable inclusion of UAM in societies catering for all citizen-related topics and contributing to the development and diffusion of the UAM ecosystem.

Suggested Citation

  • Kalakou, Sofia & Marques, Catarina & Prazeres, Duarte & Agouridas, Vassilis, 2023. "Citizens' attitudes towards technological innovations: The case of urban air mobility," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:tefoso:v:187:y:2023:i:c:s0040162522007211
    DOI: 10.1016/j.techfore.2022.122200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522007211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.122200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Fabio Luis Marques & Duboz, Amandine & Grosso, Monica & Raposo, María Alonso & Krause, Jette & Mourtzouchou, Andromachi & Balahur, Alexandra & Ciuffo, Biagio, 2022. "An acceptance divergence? Media, citizens and policy perspectives on autonomous cars in the European Union," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 224-238.
    2. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2016. "How and why do men and women differ in their willingness to use automated cars? The influence of emotions across different age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 374-385.
    3. Li, Tiebei & Dodson, Jago & Sipe, Neil, 2018. "Examining household relocation pressures from rising transport and housing costs – An Australian case study," Transport Policy, Elsevier, vol. 65(C), pages 106-113.
    4. Mohamed, Nader & Al-Jaroodi, Jameela & Jawhar, Imad & Idries, Ahmed & Mohammed, Farhan, 2020. "Unmanned aerial vehicles applications in future smart cities," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Pettigrew, Simone & Dana, Liyuwork Mitiku & Norman, Richard, 2019. "Clusters of potential autonomous vehicles users according to propensity to use individual versus shared vehicles," Transport Policy, Elsevier, vol. 76(C), pages 13-20.
    6. Straubinger, Anna & Rothfeld, Raoul & Shamiyeh, Michael & Büchter, Kai-Daniel & Kaiser, Jochen & Plötner, Kay Olaf, 2020. "An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction," Journal of Air Transport Management, Elsevier, vol. 87(C).
    7. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    9. Winter, Scott R. & Rice, Stephen & Lamb, Tracy L., 2020. "A prediction model of Consumer's willingness to fly in autonomous air taxis," Journal of Air Transport Management, Elsevier, vol. 89(C).
    10. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    11. Hinnerk Eißfeldt, 2020. "Sustainable Urban Air Mobility Supported with Participatory Noise Sensing," Sustainability, MDPI, vol. 12(8), pages 1-11, April.
    12. Ayamga, Matthew & Akaba, Selorm & Nyaaba, Albert Apotele, 2021. "Multifaceted applicability of drones: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Richter, Andreas & Löwner, Marc-O. & Ebendt, Rüdiger & Scholz, Michael, 2020. "Towards an integrated urban development considering novel intelligent transportation systems," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    14. Carroll, Páraic & Benevenuto, Rodolfo & Caulfield, Brian, 2021. "Identifying hotspots of transport disadvantage and car dependency in rural Ireland," Transport Policy, Elsevier, vol. 101(C), pages 46-56.
    15. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    2. Bridgelall, Raj, 2023. "Forecasting market opportunities for urban and regional air mobility," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    3. Yavas, Volkan & Yavaş Tez, Özge, 2023. "Consumer intention over upcoming utopia: Urban air mobility," Journal of Air Transport Management, Elsevier, vol. 107(C).
    4. Hwang, Ji-Hyon & Hong, Sungjo, 2023. "A study on the factors influencing the adoption of urban air mobility and the future demand: Using the stated preference survey for three UAM operational scenarios in South Korea," Journal of Air Transport Management, Elsevier, vol. 112(C).
    5. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    7. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    8. Merkert, Rico & Beck, Matthew J. & Bushell, James, 2021. "Will It Fly? Adoption of the road pricing framework to manage drone use of airspace," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 156-170.
    9. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    10. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    11. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    12. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    13. Jan Silberer & Stefanie Astfalk & Patrick Planing & Patrick Müller, 2023. "User needs over time: the market and technology maturity model (MTMM)," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-12, December.
    14. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    15. Kähler, Svantje T. & Abben, Thomas & Luna-Rodriguez, Aquiles & Tomat, Miriam & Jacobsen, Thomas, 2022. "An assessment of the acceptance and aesthetics of UAVs and helicopters through an experiment and a survey," Technology in Society, Elsevier, vol. 71(C).
    16. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.
    17. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    19. Olaru, Doina & Greaves, Stephen & Leighton, Catherine & Smith, Brett & Arnold, Tony, 2021. "Peer-to-Peer (P2P) carsharing and driverless vehicles: Attitudes and values of vehicle owners," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 180-194.
    20. Tao, Tao & Cao, Jason, 2022. "Examining motivations for owning autonomous vehicles: Implications for land use and transportation," Journal of Transport Geography, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:187:y:2023:i:c:s0040162522007211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.